Skip to main content
Log in

A Cellulolytic Streptomyces Sp. Isolated from a Highly Oligotrophic Niche Shows Potential for Hydrolyzing Agricultural Wastes

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Cellulases from Streptomyces species can be used as auxiliary agents in the pretreatment of lignocellulosic materials, but little work has been done on this topic. Besides, Streptomyces strains have been identified from Cuatro Cienegas basin, but their potential in the treatment of agricultural wastes has not been demonstrated. In this work a Streptomyces sp., strain CC48 isolated from the oligotrophic environment, shows high levels of cellulolytic activity (0.76 U/ mL at pH 7.0, 60 °C) in minimum medium supplemented with carboxymethyl cellulose compared with other Streptomyces strains and isolates in a bacterial collection. At least three putative cellulases (~30, 40, and 45 kDa) were identified in Streptomyces sp. CC48 extracts. The addition of Mg2+ increased cellulase activity by 23%, whereas other cations resulted in decreased catalysis. Residual cellulolytic activities after 4 and 8 h of incubation at 60 °C were ~ 73 and 65%, respectively, and ~ 98% at 50 °C after 8 h. Corn cob and wheat straw pretreated with an alkaline method showed saccharification values of 320 and 330 mg/g of reducing sugars per gram of dry substrate, respectively. The significance of this work lies in the fact that data provided here show that Streptomyces sp. strain CC48 is capable of hydrolyzing both maize and wheat substrates, suggesting the potential of this bacterium to hydrolyze agricultural wastes. Also, Cuatro Cienegas Basin may represent a source for efficient cellulolytic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Grand View Research, Market Research Report (2020) Enzymes market size, share & trends analysis report by application (industrial enzymes, specialty enzymes), by product (carbohydrase, proteases, lipases), by source, by region, and segment forecast 2020–2027. Grand View Research. Available via https://www.grandviewresearch.com/industry-analysis/enzymes-industry. Accessed 6 April 2020

  2. De Lima ALG, do Nascimiento RP, da Silva-Bon EP et al (2005) Streptomyces drozdowiczii cellulase production using agro-industrial by-products and its potential use in the detergent and textile industries. Enzym Microb Technol 37:272–277. https://doi.org/10.1016/j.enzmictec.2005.03.016

    Article  CAS  Google Scholar 

  3. Hsu CL, Chang KS, Chang YH et al (2011) Pretreatment and hydrolysis of cellulosic agricultural wastes with a cellulase-producing Streptomyces for bioethanol production. Biomass Bioenergy 35(5):1878–1884. https://doi.org/10.1016/j.biombioe.2011.01.031

    Article  CAS  Google Scholar 

  4. Gilbert H, Hazlewood GP (1993) Bacterial cellulases and xylanases. J Gen Microbiol 139:187–194. https://doi.org/10.1099/00221287-139-2-187

    Article  CAS  Google Scholar 

  5. Saratale GD, Saratale RG, Oh SE (2012) Production and characterization of multiple cellulolytic enzymes by isolated Streptomyces sp. MDS. Biomass Bioenergy 47:302–315. https://doi.org/10.1016/j.biombioe.2012.09.030

    Article  CAS  Google Scholar 

  6. Berrin JG, Navarro D, Couturier M, Olivé C, Grisel S, Haon M, Taussac S, Lechat C, Courtecuisse R, Favel A, Coutinho PM, Lesage-Meessen L (2012) Exploring the natural fungal biodiversity of tropical and temperature forests toward improvement of biomass conversion. Appl Environ Microbiol 78(18):6483–6490. https://doi.org/10.1128/AEM.01651-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rastogi G, Bhalla A, Adhikari A, Bischoff KM, Hughes SR, Christopher LP, Sani RK (2010) Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresour Technol 101(22):8798–8806. https://doi.org/10.1016/j.biortech.2010.06.001

    Article  CAS  PubMed  Google Scholar 

  8. Saini A, Aggarwal N (2019) Saccharification of Parthenium hysterophorus biomass using cellulase from Streptomyces sp. NAA2. Ann Microbiol 69:685–694. https://doi.org/10.1007/s13213-019-01459-6

    Article  CAS  Google Scholar 

  9. Sethi S, Datta A, Gupta BL et al (2013) Optimization of cellulase production from bacteria isolated from soil. ISRN Biotech 2013. https://doi.org/10.5402/2013/985685

  10. Yassien MAM, Jiman-Ftani AAM, Asfour HZ (2014) Production, purification and characterization of cellulase from Streptomyces sp. Afr J Microbiol Res 8(4):348–354. https://doi.org/10.5897/AJMR2013.6500

    Article  CAS  Google Scholar 

  11. Jang HD, Chen KS (2003) Production and characterization of thermostable cellulases from Streptomyces transformant T3-1. World J Microbiol Biotechnol 19:263–268. https://doi.org/10.1023/A:1023641806194

    Article  CAS  Google Scholar 

  12. Hansen GH, Lübeck M, Frisvad JC, Lübeck PS, Andersen B (2015) Production of cellulolytic enzymes from a ascomycetes: comparison of solid state and submerged fermentation. Process Biochem 50(9):1327–1341. https://doi.org/10.1016/j.procbio.2015.05.017

    Article  CAS  Google Scholar 

  13. Hölker U, Höfer M, Lenz J (2004) Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64:175–186. https://doi.org/10.1007/s00253-003-1504-3

    Article  CAS  PubMed  Google Scholar 

  14. Akurathi R, Thoti D (2018) Biocatalysis of agro-processing waste by marine Streptomyces fungicidicus strain RPBS-A4 for cellulase production. J Appl Biol Biotechnol 6(1):38–42. https://doi.org/10.7324/JABB.2018.60107

  15. Brito-Cunha CC, Rodrigues-Gama A, Jesuino RSA et al (2015) Production of cellulases from a novel thermophilic Streptomyces thermocerradoensis I3 using agricultural waste residue as substrate. J Agric Environ Sci 4(1):90–99. https://doi.org/10.15640/jaes.v4n1a12

  16. Hussain AA, Abdel-Salam MS, Abo-Ghalia HH, Hegazy WK, Hafez SS (2017) Optimization and molecular identification of novel cellulose degrading bacteria isolated from Egyptian environment. J Genet Eng Biotechnol 15(1):77–85. https://doi.org/10.1016/j.jgeb.2017.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  17. Saini A, Aggarwal NK, Sharma A, Yadav A (2015) Actinomycetes: a source of lignocellulolytic enzymes. Enzyme Res 2015:1–15. https://doi.org/10.1155/2015/279381

    Article  CAS  Google Scholar 

  18. Fatokun EN, Nwodo UU, Okoh A (2016) Classical optimization of cellulose and xylanase production by a marine Streptomyces species. Appl Sci 6(10):286. https://doi.org/10.3390/app6100286

    Article  CAS  Google Scholar 

  19. Bispo ASR, Andrade JP, Souza DT et al (2018) Utilization of agroindustrial by-products as substrate in endoglucanase production by Streptomyces diastaticus PA-01 under submerged fermentation. Braz J Chem Eng 35(2):429–440. https://doi.org/10.1590/0104-6632.20180352s20160415

    Article  CAS  Google Scholar 

  20. Da Vinha FNM, Gravina-Oliveira MP, Franco MN et al (2011) Cellulase production by Streptomyces viridobrunneus SCPE-09 using lignocellulosic biomass as inducer substrate. Appl Biochem Biotechnol 164:256–267. https://doi.org/10.1007/s12010-010-9132-8

    Article  CAS  PubMed  Google Scholar 

  21. Rathnan RK, Ambili M (2011) Cellulase enzyme production by Streptomyces sp. using fruit waste as substrate. Aust J Basic Appl Sci 5(12):1114–1118

    CAS  Google Scholar 

  22. Elser JJ, Schampel JH, Garcia-Pichel F et al (2005) Effects of phosphorus enrichment and grazing snails on modern stromatolitic microbial communities. Freshw Biol 50:1808–1825. https://doi.org/10.1111/j.1365-2427.2005.01451.x

    Article  CAS  Google Scholar 

  23. Souza V, Moreno-Letelier A, Travisano M et al (2018) The lost world of Cuatro Ciénegas Basin, a relictual bacterial niche in a desert oasis. eLife 7:e38278. https://doi.org/10.7554/eLife.38278.001

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kieser T, Bibb MJ, Buttner MJ et al (2000) Growth and preservation of Streptomyces. In: The John Innes Foundation (ed), Practical Streptomyces genetics. Chapter 2. Norwich, UK. pp: 43, 409

  25. Cruz-Morales P, Ramos-Aboites HE, Licona-Cassani C, Selem-Mójica N, Mejía-Ponce PM, Souza-Saldívar V, Barona-Gómez F (2017) Actinobacteria phylogenomics, selective isolation from an iron oligotrophic environment and siderophore functional characterization, unveil new desferrioxamine traits. FEMS Microbiol Ecol 93:1–12. https://doi.org/10.1093/femsec/fix086

    Article  CAS  Google Scholar 

  26. Amore A, Pepe O, Ventorino V et al (2012) Cloning and recombinant expression of cellulase from the cellulolytic strain Streptomyces sp. G12 isolated from compost. Microb Cell Factories 11:164. https://doi.org/10.1186/1475-2859-11-164

    Article  CAS  Google Scholar 

  27. Miller GL (1959) Use of Dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  28. Prasad P, Singh T, Bedi S (2013) Characterization of the cellulolytic enzyme produced by Streptomyces griseorubens (accession no. AB184139) isolated from Indian soil. J King Saud Univ Sci 25:245–250. https://doi.org/10.1016/j.jksus.2013.03.003

    Article  Google Scholar 

  29. van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Int J Dairy Sci 10:3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

    Article  Google Scholar 

  30. Sun Y, Yang G, Jia ZH et al (2014) Acid hydrolysis of corn Stover using hydrochloric acid: kinetic modeling and statistical optimization. Chem Ind Chem Eng Q 20(4):531–539. https://doi.org/10.2298/CICEQ130911035S

    Article  CAS  Google Scholar 

  31. Hong E, Kim D, Kim J, Kim J, Yoon S, Rhie S, Ha S, Ryu Y (2015) Optimization of alkaline pretreatment on corn Stover for enhanced production of 1.3-propanediol and 2,3-butanediol by Klebsiella pneumoniae AJ4. Biomass Bioenergy 77:177–185. https://doi.org/10.1016/j.biombioe.2015.03.016

    Article  CAS  Google Scholar 

  32. Souza V, Eguiarte LE, Siefert J, Elser JJ (2008) Microbial endemism: does phosphorus limitation enhance speciation? Nat Rev Microbiol 6:559–564. https://doi.org/10.1038/nrmicro1917

    Article  PubMed  Google Scholar 

  33. Mathew BT, Torky Y, Amin A, Mourad AHI, Ayyash MM, el-Keblawy A, Hilal-Alnaqbi A, AbuQamar SF, el-Tarabily KA (2020) Halotolerant marine rhizosphere-competent Actinobacteria promote Salicornia bigelovii growth and seed production using seawater irrigation. Front Microbiol 11:552. https://doi.org/10.3389/fmicb.2020.00552

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ventorino V, Ionata E, Birolo L, Montella S, Marcolongo L, de Chiaro A, Espresso F, Faraco V, Pepe O (2016) Lignocellulose-adapted endo-cellulose producing Streptomyces strains for bioconversion of cellulose-based materials. Front Microbiol 7:2061. https://doi.org/10.3389/fmicb.2016.02061

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lopes e Oliveira R, Atanásio-Borba CB, Duvoisin-Junior S et al (2016) Production and characterization of endoglucanase secreted by Streptomyces capoamus isolated from Caatinga. Afr J Microbiol Res 15(42):2394–2401. https://doi.org/10.5897/AJB2015.14610

    Article  CAS  Google Scholar 

  36. Hsieh CC, Cannella D, Jørgensen H, Felby C, Thygesen LG (2014) Cellulase inhibition by high concentrations of monosaccharides. J Agric Food Chem 62:3800–3805. https://doi.org/10.1021/jf5012962

    Article  CAS  PubMed  Google Scholar 

  37. Xiao Z, Zhang X, Gregg DJ, Saddler JN (2004) Effects of sugar inhibition on cellulases and β-Glucosidase during enzymatic hydrolysis of softwood substrates. Appl Biochem Biotechnol 115:1115–1126. https://doi.org/10.1385/ABAB:115:1-3:1115

    Article  Google Scholar 

  38. Duarte GC, Moreira LRS, Jaramillo PMD, Filho EXF (2012) Biomass-derived inhibitors of holocellulases. Bioenerg Res 5:768–777. https://doi.org/10.1007/s12155-012-9182-6

    Article  CAS  Google Scholar 

  39. Kucharska K, Rybarczyk P, Holowacz I et al (2018) Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules 23(11):2937. https://doi.org/10.3390/molecules23112937

    Article  CAS  PubMed Central  Google Scholar 

  40. Book AJ, Lewin GR, McDonald BR, Takasuka TE et al (2016) Evolution of high cellulolytic activity in symbiotic Streptomyces through selection of expanded gene content and coordinate gene expression. PLoS Biol 14(6):e1002475. https://doi.org/10.1371/journal.pbio.1002475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jaradat Z, Dawagreh A, Ababneh Q et al (2008) Influence of culture conditions on cellulase production by Streptomyces sp. (strain J2). Jordan J Biol Sci 1(4):141–146

  42. Franco-Cirigliano MN, de Carvalho-Rezende R, Gravina-Oliveira MP et al (2013) Streptomyces misionensis PESB-25 produces a thermoacidophilic endoglucanase using sugarcane bagasse and corn steep liquor as the sole organic substrates. Biomed Res Int 2013. https://doi.org/10.1155/2013/584207

  43. Kluepfel D, Shareck F, Mondou F, Morosoli R (1986) Characterization of cellulase and xylanase activities of Streptomyces lividans. Appl Microbiol Biotechnol 24:230–234. https://doi.org/10.1007/BF00261542

    Article  CAS  Google Scholar 

  44. Alani F, Anderson WA, Moo-Young M (2008) New isolate of Streptomyces sp. with novel thermoalkalotolerant cellulases. Biotechnol Lett 30:123–126. https://doi.org/10.1007/s10529-007-9500-9

    Article  CAS  PubMed  Google Scholar 

  45. Loow YL, Wu TY, Jahim JM et al (2016) Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23:1491–1520. https://doi.org/10.1007/s10570-016-0936-8

    Article  CAS  Google Scholar 

  46. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685. https://doi.org/10.1016/j.biotechadv.2011.05.005

    Article  CAS  PubMed  Google Scholar 

  47. Muthusamy S, Brindhashini A, Deivakumari M et al (2018) Investigation on saccharification and bioethanol production from pretreated agro-residues using a mangrove associated Actinobacterium Streptomyces variabilis (MAB3). Waste Biomass Valor 9:969–984. https://doi.org/10.1007/s12649-017-9886-0

    Article  CAS  Google Scholar 

  48. Muthusamy S, Selvan ST, Arunachalam P et al (2017) Bioconversion and bioethanol production from agro-residues through fermentation process using mangrove-associated actinobacterium Streptomyces olivaceus (MSU3). Biofuels 10(2):167–179. https://doi.org/10.1080/17597269.2017.1309853

    Article  CAS  Google Scholar 

  49. Yu HY, Li X (2015) Alkali-stable cellulase from a halophilic isolate, Gracillibacillus sp. SK1 and its application in lignocellulosic saccharification for ethanol production. Biomass Bioenergy 81:19–25. https://doi.org/10.1016/j.biombioe.2015.05.020

    Article  CAS  Google Scholar 

  50. Singh S, Brar JK, Sandhu DK, Kaur A (1996) Isozyme polymorphism of cellulases in Aspergillus terreus. J Basic Microbiol 36(4):289–296. https://doi.org/10.1002/jobm.3620360412

    Article  CAS  PubMed  Google Scholar 

  51. Casados-Vazquez LE, Avila-Cabrera S, Bideshi DK et al (2015) Heterologous expression, purification and biochemical characterization of endochitinase ChiA74 from Bacillus thuringiensis. Protein Expr Purif 109:99–105. https://doi.org/10.1016/j.pep.2014.11.015

    Article  CAS  PubMed  Google Scholar 

  52. Dutta T, Sahoo R, Sengupta R et al (2008) Novel cellulases from an extremophilic filamentous fungi Penicillium citrinum: production and characterization. J Ind Microbiol Biotechnol 35(4):275–282. https://doi.org/10.1007/s10295-008-0304-2

    Article  CAS  PubMed  Google Scholar 

  53. Pinheiro GL, Rodriguez JE, Domont GB, de Souza W, Junqueira M, Frases S (2017) Biochemical characterization of Streptomyces sp. I1.2 secretome reveals the presence of multienzymatic complexes containing cellulases and accessory enzymes. Bioenerg Res 10:1–12. https://doi.org/10.1007/s12155-016-9771-x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially supported by Grant SEP-CONACyT (258220) México, to J.E. B-C. Samuel Celaya-Herrera is a doctoral student in the graduate program in BioSciences of the University of Guanajuato (UG), Mexico, and is supported by a scholarship from CONACyT. L.E. C.-V is an Associate Researcher supported by Grant 2069 from Cátedras-CONACYT, México. FBG acknowledges support from Valeria Souza, Gabriela Olmedo, and Pablo Cruz Morales, during expeditions into Cuatro Ciénegas Basin between 2013 and 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José E. Barboza-Corona.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Ethical Statement

This article does not contain any studies with human participants or animals by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 13 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celaya-Herrera, S., Casados-Vázquez, L.E., Valdez-Vazquez, I. et al. A Cellulolytic Streptomyces Sp. Isolated from a Highly Oligotrophic Niche Shows Potential for Hydrolyzing Agricultural Wastes. Bioenerg. Res. 14, 333–343 (2021). https://doi.org/10.1007/s12155-020-10174-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10174-z

Keywords

Navigation