Skip to main content

Advertisement

Log in

Studies on Microwave-Assisted Pyrolysis of Rice Straw Using Solar Photovoltaic Power

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Pyrolysis of one of the most underutilized lignocellulosic biomasses, namely rice straw (RS) has been carried out through solar photovoltaic (PV)-powered microwave heating with biochar as an additive for the microwave absorption. Through the preliminary studies, microwave power of 700 W and reaction times of 20 min have been chosen optimum for maximizing the yield of bio-oil, a desired product for the study along with biochar ignoring gas, due to their easy collection, storability and transportation and higher commercial value. The results of the study revealed the highest yield of bio-oil as 25% and 23% with and without additive respectively. The net energy recovery percentage was calculated to be around 71 and 56 in using solar PV and grid electricity respectively. The exergy efficiency of pyrolysis system under this study was estimated to be about 55%. The payback period of the set-up is 6.5 and 3.12 years if solar PV system and grid electricity are respectively used. The monthly income of $ 33 may be earned from the pyrolytic products such as biochar, wood vinegar and tar by pyrolysing 675 kg of RS annually (2.25 kg per day at 450 g per batch with 5 batches per day and 300 days per year). The potential of mitigating CO2 emission during the total life time of 30 years from the existing set-up is 55 tons and the earning of carbon credit is $ 1600 considering the current price of carbon credit as $ 30/ton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Agricultural Statistics Report at a Glance (ASRG) (2016) Govt. of India, New Delhi. https://eands.dacnet.nic.in/PDF/Glance-2016.pdf. Accessed 30 June 2018

  2. Ravindra K, Singh T, Mor S (2019) Emissions of air pollutants from primary crop residue burning in India and their mitigation strategies for cleaner emissions. J Cleaner Product 208:261–273. https://doi.org/10.1016/j.jclepro.2018.10.031

    Article  CAS  Google Scholar 

  3. Bhuvaneshwari S, Hettiarachchi H, Meegoda JN (2019) Crop residue burning in India: policy challenges and potential solutions. Int J Environ Rese Public Health 16:832. https://doi.org/10.3390/ijerph16050832

    Article  CAS  Google Scholar 

  4. Chandra R, Takeuchi H, Hasegawa T (2012) Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew Sustain Energy Rev 16:1462–1476. https://doi.org/10.1016/j.rser.2011.11.035

    Article  CAS  Google Scholar 

  5. Huang YF, Chiueh PT, Kuan WH, Lo SL (2016) Microwave pyrolysis of lignocellulosic biomass: heating performance and reaction kinetics. Energy 100:137–144. https://doi.org/10.1016/j.energy.2016.01.088

    Article  CAS  Google Scholar 

  6. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Mielenz JR (2006) The path forward for biofuels and biomaterials. Science 311:484–489. https://doi.org/10.1126/science.1114736

    Article  CAS  PubMed  Google Scholar 

  7. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807. https://doi.org/10.1126/science.1137016

    Article  CAS  PubMed  Google Scholar 

  8. Saifuddin N, Salman B, Refal H, Ong M (2017) Microwave pyrolysis of lignocellulosic biomass-a contribution to power Africa. Ener Sus Soc 7: no. 23. https://doi.org/10.1186/s13705-017-0126-z

  9. Zhang Y, Cui Y, Liu S, Fan L, Zhou N, Peng P, Wang Y, Guo F, Min M, Cheng Y, Liu Y (2020) Fast microwave-assisted pyrolysis of wastes for biofuels production-a review. Bioresour Technol 297:122480. https://doi.org/10.1016/j.biortech.2019.122480

    Article  CAS  PubMed  Google Scholar 

  10. Lam SS, Chase HA (2012) A review on waste to energy processes using microwave pyrolysis. Energies 5:4209–4232. https://doi.org/10.3390/en5104209

    Article  CAS  Google Scholar 

  11. Papari S, Hawboldt K (2015) A review on the pyrolysis of woody biomass to bio-oil: focus on kinetic models. Renew Sustain Energy Rev 52:1580–1595. https://doi.org/10.1016/j.rser.2015.07.191

    Article  CAS  Google Scholar 

  12. Chen P, Xie Q, Addy M, Zhou W, Liu Y, Wang Y, Ruan R (2016) Utilization of municipal solid and liquid wastes for bioenergy and bioproducts production. Bioresour Technol 215:163–172. https://doi.org/10.1016/j.biortech.2016.02.094

    Article  CAS  PubMed  Google Scholar 

  13. Du Z, Li Y, Wang X, Wan Y, Chen Q, Wang C, Lin X, Liu Y, Chen P, Ruan R (2011) Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresour Technol 102:4890–4896. https://doi.org/10.1016/j.biortech.2011.01.055

    Article  CAS  PubMed  Google Scholar 

  14. Haque KE (1999) Microwave energy for mineral treatment processes-a brief review. Int J Miner Process 57:1–24. https://doi.org/10.1016/S0301-7516(99)00009-5

    Article  CAS  Google Scholar 

  15. Ferrera-Lorenzo N, Fuente E, Bermúdez JM, Suárez-Ruiz I, Ruiz B (2014) Conventional and microwave pyrolysis of a macroalgae waste from the agar-agar industry. Prospects for bio-fuel production. Bioresour Technol 151:199–206. https://doi.org/10.1016/j.biortech.2013.10.047

    Article  CAS  PubMed  Google Scholar 

  16. Fang S, Gu W, Dai M, Xu J, Yu Z, Lin Y, Chen J, Ma X (2018) A study on microwave-assisted fast co-pyrolysis of chlorella and tire in the N2 and CO2 atmospheres. Bioresour Technol 250:821–827. https://doi.org/10.1016/j.biortech.2017.110

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y, Dai L, Wang R, Fan L, Liu Y, Xie Q, Ruan R (2016) Hydrocarbon fuel production from soapstock through fast microwave-assisted pyrolysis using microwave absorbent. J Anal Appl Pyrolysis 119:251–258. https://doi.org/10.1016/j.jaap.2016.01.008

    Article  CAS  Google Scholar 

  18. Kappe CO, Stadler A, Dallinger D (2012) Microwaves in organic and medicinal chemistry Vol. 52. John Wiley & Sons

  19. Menéndez JA, Arenillas A, Fidalgo B, Fernández Y, Zubizarreta L, Calvo EG, Bermúdez JM (2010) Microwave heating processes involving carbon materials. Fuel Process Technol 91:1–8. https://doi.org/10.1016/j.fuproc.2009.08.021

    Article  CAS  Google Scholar 

  20. Ghosal M, Mahapatra N, Sahoo N, Rout P (2015) A study on preparation and heating value of bio-coal from green coconut shell for domestic cooking fuel. Ecol Environ Conserv 22:91–97 (ISSN 0971–765 X)

    Google Scholar 

  21. Li J, Dai J, Liu G, Zhang H, Gao Z, Fu J, He Y, Huang Y (2016) Biochar from microwave pyrolysis of biomass: a review. Biomass Bioenergy 94:228–244. https://doi.org/10.1016/j.biombioe.2016.09.010

    Article  CAS  Google Scholar 

  22. Chiaramonti D, Oasmaa A, Solantausta Y (2007) Power generation using fast pyrolysis liquids from biomass. Renew Sustain Energy Rev 11:1056–1086. https://doi.org/10.1016/j.rser.2005.07.008

    Article  CAS  Google Scholar 

  23. Omulo G, Willett S, Seay J, Banadda N, Kabenge I, Zziwa A, Kiggundu N, Books RU, OER R, SCARDA R, Tenders RU (2017) Characterization of slow pyrolysis wood vinegar and tar from banana wastes biomass as potential organic pesticides. J Sus Dev 10:81–92 https://repository.ruforum.org/ag_dlios-by-authors/36701/Omulo,%20Godfrey%20

    Google Scholar 

  24. De Wild P, Reith H, Heeres E (2011) Biomass pyrolysis for chemicals. Biofuels 2:185–208. https://doi.org/10.4155/bfs.10.88

    Article  CAS  Google Scholar 

  25. Yang JF, Yang CH, Liang MT, Gao ZJ, Wu YW, Chuang LY (2016) Chemical composition, antioxidant, and antibacterial activity of wood vinegar from Litchi chinensis. Molecules 21:1150. https://doi.org/10.3390/molecules21091150

    Article  CAS  PubMed Central  Google Scholar 

  26. Theapparat Y, Chandumpai A, Faroongsarng D (2018) Physicochemistry and utilization of wood vinegar from carbonization of tropical biomass waste. In: Tropical forests-new edition 163-183. IntechOpen. https://doi.org/10.5772/intechopen.77380

  27. Aguirre JL, Baena J, Martín MT, Nozal L, González S, Manjón JL, Peinado M (2020) Composition, ageing and herbicidal properties of wood vinegar obtained through fast biomass pyrolysis. Energies 13:2418. https://doi.org/10.3390/en13102418

    Article  CAS  Google Scholar 

  28. Sangsuk S, Suebsiri S, Puakhom P (2018) The metal kiln with heat distribution pipes for high quality charcoal and wood vinegar production. Energy Sus Dev 47:149–157. https://doi.org/10.1016/j.esd.2018.10.002

    Article  Google Scholar 

  29. Li SG, Xu SP, Liu SQ, Yang C, Lu QH (2004) Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Process Technol 85:1201–1211. https://doi.org/10.1016/j.fuproc.2003.11.043

    Article  CAS  Google Scholar 

  30. Ates F, Işıkdağ MA (2008) Evaluation of the role of the pyrolysis temperature in straw biomass samples and characterization of the oils by GC/MS. Energy Fuel 22:1936–1943. https://doi.org/10.1021/ef7006276

    Article  CAS  Google Scholar 

  31. Ravikumar C, Kumar PS, Subhashni SK, Tejaswini PV, Varshini V (2017) Microwave assisted fast pyrolysis of corn cob, corn stover, saw dust and rice straw: experimental investigation on bio-oil yield and high heating values. Sus Mater Technol 11:19–27. https://doi.org/10.1016/j.susmat.2016.12.003

    Article  CAS  Google Scholar 

  32. Mutsengerere S, Chihobo CH, Musademba D, Nhapi I (2019) A review of operating parameters affecting bio-oil yield in microwave pyrolysis of lignocellulosic biomass. Renew Sus Energy Rev 104:328–336. https://doi.org/10.1016/j.rser.2019.01.030

    Article  CAS  Google Scholar 

  33. Huang YF, Chiueh PT, Kuan WH, Lo SL (2015) Effects of lignocellulosic composition and microwave power level on the gaseous product of microwave pyrolysis. Energy 89:974–981. https://doi.org/10.1016/j.energy.2015.06.035

    Article  CAS  Google Scholar 

  34. Yu F, Ruan R, Steele P (2009) Microwave pyrolysis of corn stover. Trans ASABE 52:1595–1601. https://doi.org/10.13031/2013.2911

    Article  CAS  Google Scholar 

  35. Lin YC, Wu TY, Liu WY, Hsiao YH (2014) Production of hydrogen from rice straw using microwave-induced pyrolysis. Fuel 119:21–26. https://doi.org/10.1016/j.fuel.2013.11.046

    Article  CAS  Google Scholar 

  36. Martín MT, Sanz AB, Nozal L, Castro F, Alonso R, Aguirre JL, González SD, Matía MP, Novella JL, Peinado M, Vaquero JJ (2017) Microwave-assisted pyrolysis of Mediterranean forest biomass waste: bioproduct characterization. J Anal Appl Pyrolysis 127:278–285. https://doi.org/10.1016/j.jaap.2017.07.024

    Article  CAS  Google Scholar 

  37. Dewulf J, Van Langenhove H, Muys B, Bruers S, Bakshi BR, Grubb GF, Paulus DM, Sciubba E (2008) Exergy: its potential and limitations in environmental science and technology. Environ Sci Technol 42:2221–2232. https://doi.org/10.1021/es071719a

    Article  CAS  PubMed  Google Scholar 

  38. Parvez AM, Wu T, Afzal MT, Mareta S, He T, Zhai M (2019) Conventional and microwave-assisted pyrolysis of gumwood: a comparison study using thermodynamic evaluation and hydrogen production. Fuel Process Technol 184:1–11. https://doi.org/10.1016/j.fuproc.2018.11.007

    Article  CAS  Google Scholar 

  39. Parvez AM, Mujtaba IM, Wu T (2016) Energy, exergy and environmental analyses of conventional, steam and CO2-enhanced rice straw gasification. Energy 94:579–588. https://doi.org/10.1016/j.energy.2015.11.022

    Article  CAS  Google Scholar 

  40. Wang X, Lv W, Guo L, Zhai M, Dong P, Qi G (2016) Energy and exergy analysis of rice husk high-temperature pyrolysis. Int J Hydrogen Energy 41:21121–21130. https://doi.org/10.1016/j.ijhydene.2016.09.155

    Article  CAS  Google Scholar 

  41. Zhang Y, Li B, Li H, Liu H (2011) Thermodynamic evaluation of biomass gasification with air in autothermal gasifiers. Thermochim Acta 519:65–71. https://doi.org/10.1016/j.tca.2011.03.005

    Article  CAS  Google Scholar 

  42. Dewulf J, Van Langenhove H, Van De Velde B (2005) Exergy-based efficiency and renewability assessment of biofuel production. Environ Sci Technol 39:3878–3882. https://doi.org/10.1021/es048721b

    Article  CAS  PubMed  Google Scholar 

  43. Boateng AA, Mullen CA, Osgood-Jacobs L, Carlson P, Macken N (2012) Mass balance, energy, and exergy analysis of bio-oil production by fast pyrolysis. J Energy Resour Technol 134. https://doi.org/10.1115/1.4007659

  44. Moran MJ, Shapiro HN, Boettner DD, Bailey MB (2010) Fundamentals of engineering thermodynamics. John Wiley & Sons

  45. Huang YF, Kuan WH, Lo SL, Lin CF (2010) Hydrogen-rich fuel gas from rice straw via microwave-induced pyrolysis. Bioresour Technol 101:1968–1973. https://doi.org/10.1016/j.biortech.2009.09.073

    Article  CAS  PubMed  Google Scholar 

  46. SECO, State Energy Conservation Office, Austin, Texas, Estimating PV system size and cost, Fact Sheet No. 24:1–4. www.InfinitePower.org

  47. Chel A, Tiwari GN (2011) A case study of a typical 2.32 kWP stand-alone photovoltaic (SAPV) in composite climate of New Delhi (India). Appl Energy 88:1415–1426. https://doi.org/10.1016/j.apenergy.2010.10.027

    Article  Google Scholar 

  48. Tiwari GN, Tiwari AK (2007) Solar distillation practice in water desalination systems. Anamaya Pub. Ltd., New Delhi

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Odisha University of Agriculture and Technology (OUAT) for providing required laboratory facilities for conducting experimental analysis at the Central Laboratory of the University.

Funding

The authors gratefully acknowledge the Indian Council of Agricultural Research (ICAR) for providing financial support to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Elsayed Mahmoud Fodah.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fodah, A.E.M., Ghosal, M.K. & Behera, D. Studies on Microwave-Assisted Pyrolysis of Rice Straw Using Solar Photovoltaic Power. Bioenerg. Res. 14, 190–208 (2021). https://doi.org/10.1007/s12155-020-10172-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10172-1

Keywords