Skip to main content

Advertisement

Log in

A Review on Food Uses and the Prospect of Egusi Melon for Biodiesel Production

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Melons belong to the Cucurbitaceae family and are grown in the tropical and temperate regions of the world. With numerous identified varieties, melons are regarded as one of the most economically important vegetable crops. ‘Egusi’ melon, one of the most popular members of the melon family with diverse species, has formed a significant part of the diet of many Africans and Asians. Egusi melon seed kernels are a good source of edible oil (31–59%), protein (19–37%), fibre (3–4%), and carbohydrate (8–20%). The objectives of this review are to highlight the food uses of egusi melon and its prospect for biodiesel production. Firstly, an introduction to egusi melon is presented, describing its origins, varieties, cultivation and yield, followed by an extensive review of the nutritional composition, oil extraction methods and analysis and food uses of egusi. Then, the engineering properties of egusi fruits, seeds and kernels and the energy utilisation of its biomass are shown. This review also covers the use of egusi seed kernel oil for biodiesel production, the rheological properties of egusi biodiesel, its engine performance, emission characteristics and the conformity of the biodiesel to standard specifications. Finally, future challenges and research directions are presented. This paper will prove to be a viable resource for the food, energy and automobile industries, as well as the scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ASTM:

American Society for Testing and Materials

B:

Biodiesel mix

C-NMR:

Carbon nuclear magnetic resonance

EN:

European standards

H-NMR:

Hydrogen nuclear magnetic resonance

KOH:

Potassium hydroxide

MSH:

Melon seed husk

NaOCH3 :

Potassium methoxide

NaOCH3 :

Sodium methoxide

NaOH:

Sodium hydroxide

SFA:

Saturated fatty acid

UFA:

Unsaturated fatty acid

USDA:

US Department of Agriculture

References

  1. Chomicki G, Schaefer H, Renner SS (2020) Origin and domestication of cucurbitaceae crops: insights from phylogenies, genomics and archaeology. New Phytol 226(5):1240–1255. https://doi.org/10.1111/nph.16015

    Article  Google Scholar 

  2. Giwa SO, Chuah LA, Adam NM (2014) Fuel properties and rheological behavior of biodiesel from egusi (Colocynthis citrullus L.) seed kernel oil. Fuel Process Technol 122:42–48. https://doi.org/10.1016/j.fuproc.2014.01.014

    Article  CAS  Google Scholar 

  3. Patel S, Rauf A (2017) Edible seeds from cucurbitaceae pamily as potential functional foods: immense promises, few concerns. Biomed Pharmacother 91:330–337. https://doi.org/10.1016/j.biopha.2017.04.090

    Article  CAS  Google Scholar 

  4. Ann PI, Moses O, Kabuo NO et al (2016) Comparative evaluation of proximate compositions, functional and physicochemical properties of raw melon seeds of five members of cucurbitaceae family. Am J Food Sci Nutr 3(1):8–17

    Google Scholar 

  5. Gusmini G, Wehner TC, Jarret RL (2004) Inheritance of egusi seed type in watermelon. J Hered 95:268–270. https://doi.org/10.1093/jhered/esh031

    Article  CAS  Google Scholar 

  6. Olubi O, Felix-Minnaar JV, Jideani VA (2019) Physicochemical and fatty acid profile of egusi oil from supercritical carbon dioxide extraction. Heliyon 5(1):e01083. https://doi.org/10.1016/j.heliyon.2018.e01083

    Article  CAS  Google Scholar 

  7. Giwa S, Abdullah LC, Adam NM (2010) Investigating “egusi” (Citrullus colocynthis L.) seed oil as potential biodiesel feedstock. Energies 3:607–618. https://doi.org/10.3390/en3040607

    Article  CAS  Google Scholar 

  8. Ntui VO, Thirukkumaran G, Azadi P, Khan RS, Nakamura I, Mii M (2010) Stable integration and expression of wasabi defensin gene in “Egusi” melon (Colocynthis citrullus L.) confers resistance to Fusarium wilt and Alternaria leaf spot. Plant Cell Rep 29:943–954. https://doi.org/10.1007/s00299-010-0880-2

    Article  CAS  Google Scholar 

  9. Osunde ZD, Kwaya PV (2012) Development of egusi melon seed extractor. International Conference on Agricultural and Food Engineering for Life (Cafei2012) 26–28.

  10. Ojieh GC, Oluba OM, Ogunlowo YR et al (2008) Compositional studies of Citrullus lanatus seeds. J Nutr Heal 6:234–256

    Google Scholar 

  11. Ndukauba J, Nwofia GE, Okocha PI et al (2015) Variability in egusi-melon genotypes (Citrullus lanatus (Thumb) Matsum and Nakai) in derived savannah environment in south-eastern Nigeria. Int J Plant Res 5:19–26. https://doi.org/10.5923/j.plant.20150501.04

    Article  Google Scholar 

  12. Amali EP, Kortse PA, Vange T (2013) The quality of ’egusi melon [(Citrullus lanatus Thunb.) Matsum and Nakai seeds derived from fruits harvested at different growth stages and at different positions on the mother plant. Int J Sci Res 3:1–7.

  13. Yusuf O, Sanni SA, Ojuekaiye EO et al (2008) Production of “egusi” melon (Citrullus Lanatus Thununder sole and mixed cropping and mixed cropping systems. ARPN J Agric Biol Sci 3:14–18.

  14. Mabaleha MB, Mitei YC, Yeboah SO (2007) A comparative study of the properties of selected melon seed oils as potential candidates for development into commercial edible vegetable oils. J Am Oil Chem Soc 84:31–36. https://doi.org/10.1007/s11746-006-1003-7

    Article  CAS  Google Scholar 

  15. Ntui VO, Thirukkumaran G, Iioka S, Mii M (2009) Efficient plant regeneration via organogenesis in “Egusi” melon (Colocynthis citrullus L.). Sci Hortic (Amsterdam) 119:397–402. https://doi.org/10.1016/j.scienta.2008.08.031

    Article  CAS  Google Scholar 

  16. Akusu MO, Kiin-Kabari DB (2015) Comparative studies on the physicochemical and sensory properties of watermelon (Citrullus lanatus) and melon (Citrullus vulgaris) seed flours used in “EGUSI” soup preparation. J Food Res 4:1–8. https://doi.org/10.5539/jfr.v4n5p1

    Article  CAS  Google Scholar 

  17. Ogundele JO, Sanni TA, Oshodi AA, Okuo JM, Amoo IA (2015) Effects of extraction media on protein isolates of some gourd melon (Egusi) seeds. Pak J Nutr 14:983–987. https://doi.org/10.3923/pjn.2015.983.987

    Article  CAS  Google Scholar 

  18. Fokou E, Tchounguep F, Achu M (2004) Preliminary nutritional evaluation of five species of egusi seeds in Cameroon. Afr J Food Agric Nutr Dev 4:1–11

    Google Scholar 

  19. Kaledzi P, Tenadu E, Dapaah H (2009) Assessment of nutritional characteristics and seed quality of two Egusi melon (Citrullus vulgaris) varieties grown in Wenchi and Kintampo districts of the Brong-Ahafo region of Ghana. Gha J Hortic 7:76–83

    Google Scholar 

  20. Adekunle AS, Ohijeagbon IO, Olusegun HD (2009) Development and performance evaluation of manually and motorized operated melon shelling machine using impact technique. J Eng Sci Technol Rev 2:12–17. https://doi.org/10.25103/jestr.021.03

    Article  Google Scholar 

  21. Sanusi SM (2015) Profit efficiency of Egusi melon (Colocynthis citrullus var. lanatus) production in Bida local government area of Niger State, Nigeria. Indian J Econ Dev 11:543–552. https://doi.org/10.5958/2322-0430.2015.00062.1

    Article  Google Scholar 

  22. National Research Council (2006) Lost Crops of Africa: Volume II: Vegetables. Washington, DC: The National Academies Press. https://doi.org/10.17226/11763.

  23. Falade OS, Otemuyiwa IO, Adekunle AS et al (2020) Nutrient composition of watermelon (Citrullis lanatus (Thunb.) Matsum & Nakai) and egusi melon (Citrullus colocynthis (L.) Schrad.) seeds. Agric Conspec Sci 85(1):43–49

    Google Scholar 

  24. Akinoso R, Are OT (2018) Elucidating energy requirements in alternative methods of robo production. J Biosyst Eng 43:128–137

    Google Scholar 

  25. Adebayo AA, Yusuf KA (2015) Analele universit. Eftimie Murgu Resita 22:11–22

    Google Scholar 

  26. Food and Agriculture Organisation of the United Nations Statistics, (FAOSTAT) 2018. Accessed 9 March 2020. http://www.fao.org/faostat/en/#data/QC

  27. Bande YM, Adam NM, Jamarei O et al (2012) Physical and mechanical properties of “egusi” melon (Citrullus colocynthis lanatus var. lanatus) fruit. Int J Agric Res 7:494–499

    Article  Google Scholar 

  28. Bande YM, Adam NM, Azmi NM et al (2012) Variation of physical properties of egusi melon (Citrullus Colocynthis Lanatus Var . Lanatus ) seeds and kernel with moisture. Int J Basic Appl Sci 12:65–74

    Google Scholar 

  29. Omeire GC, Kabuo NO, Uchegbu CO, Peter-Ikechukwu AI, Amandikwa C (2019) Production and evaluation of ready to eat soup balls from egusi, egusi- kirikiri, sesame seed and groundnut. Asian Food Sci J 7(1):1–6. https://doi.org/10.9734/afsj/2019/45926

    Article  Google Scholar 

  30. Meena MC, Patni V (2008) Isolation and identification of flavonoid “Quercetin” from Citrullus colocynthis (Linn.) Schrad. Asian J Exp Sci 22:137–142

    CAS  Google Scholar 

  31. Frazzoli C, Mazzanti F, Achu MB et al (2017) Elements of kitchen toxicology to exploit the value of traditional (African) recipes: The case of Egusi Okra meal in the diet of HIV+/AIDS subjects. Toxicol. Reports 4:474–483. Available from. https://doi.org/10.1016/j.toxrep.2017.06.008

  32. Maatooq GT, El-Sharkawy SH, Afifi MS et al (1997) C-p-hydroxybenzoylglycoflavones from Citrullus colocynthis. Phytochemistry 44:187–190. https://doi.org/10.1016/S0031-9422(96)00465-7

    Article  CAS  Google Scholar 

  33. Chukwu MN, Nwakodo CS, Alozie Q et al (2018) Comparative studies on organoleptic properties of ogiri-ahuekere and ogiri-egusi condiments. Res J Food Sci Qual Control 4(1):11–19

    Google Scholar 

  34. Akubor PI, Obasi BC (2019) Evaluation of the quality of a beverage prepared from toasted melon seeds. South Asian J Food Technol Environ 5(1):763–770

    Article  Google Scholar 

  35. Nyamnjoh HM (2018) Food, memory and transnational gastronomic culture amongst Cameroonian migrants in Cape Town, South Africa. Anthropol South. Africa 41 (1): 25–40. https://doi.org/10.1080/23323256.2018.1442728.

  36. Samaila RS, Chukwu O (2014) Development oof a motorized “egusi” melon seeds oil expeller. J Agric Eng Technol 22:13–25

    Google Scholar 

  37. Bello EI, Makanju A (2011) Performance evaluation of egunsi melon (Citrullus colocynthis L.) seeds oil biodiesel. J Emering trends Eng Appl Sci 2:741–745

    CAS  Google Scholar 

  38. Elsheikh YA, Man Z, Bustam MA, Akhtar FH, Yusup S, Muhammad A (2014) Preparation and characterisation of Citrulus colocynthis oil biodiesel: Optimisation of alkali-catalysed transesterification. Can J Chem Eng 92:435–440. https://doi.org/10.1002/cjce.21846

    Article  CAS  Google Scholar 

  39. Ambat I, Srivastava V, Sillanpää M (2018) Recent advancement in biodiesel production methodologies using various feedstock: a review. Renew Sust Energ Rev 90:356–369. https://doi.org/10.1016/j.rser.2018.03.069

    Article  CAS  Google Scholar 

  40. Oladapo OO, Bolaji MO, Abdul-Malik O (2017) Comparative study of artherogenic effects of common Nigerian edible oils in male rabbits. Br J Med Med Res 20(7):1–10. https://doi.org/10.9734/bjmmr/2017/32060

    Article  Google Scholar 

  41. Xia Q, Akanbi TO, Li R, Wang B, Yang W, Barrow CJ (2019) Lipase-catalysed synthesis of palm oil-omega-3 structured lipids. Food Funct 10(6):3142–3149. https://doi.org/10.1039/c9fo00668k

    Article  CAS  Google Scholar 

  42. Akanbi TO, Barrow CJ (2018) Compositional information useful for authentication of krill oil and the detection of adulterants. Food Anal Methods 11(1):178–187. https://doi.org/10.1007/s12161-017-0988-x

    Article  Google Scholar 

  43. Akanbi TO, Barrow CJ (2018) Lipase-produced hydroxytyrosyl eicosapentaenoate is an excellent antioxidant for the stabilization of omega-3 bulk oils, emulsions and microcapsules. Molecules 23(2):1–15. https://doi.org/10.3390/molecules23020275

    Article  CAS  Google Scholar 

  44. Akanbi TO, Barrow CJ (2015) Lipase-catalysed incorporation of EPA into emu oil: formation and characterisation of new structured lipids. J Funct Foods 19:801–809. https://doi.org/10.1016/j.jff.2014.11.010

    Article  CAS  Google Scholar 

  45. Akanbi TO, Sinclair AJ, Barrow CJ (2014) Pancreatic lipase selectively hydrolyses dpa over epa and dha due to location of double bonds in the fatty acid rather than regioselectivity. Food Chem 160:61–66. https://doi.org/10.1016/j.foodchem.2014.03.092

    Article  CAS  Google Scholar 

  46. Akubuo CO, Odigboh EU (1999) Egusi fruit coring machine. J Agric Eng Res 74:121–126. https://doi.org/10.1006/jaer.1999.0418

    Article  Google Scholar 

  47. Bande YM, Adam NM, Jamarei BO et al (2013) Egusi melon (Citrullus lanatus) crop - Malaysian new oil/energy source: Production, processing and prospects. Aust J Crop Sci 7:2101–2107

    Google Scholar 

  48. Ayodele OJ, Shittu OS (2013) Cost-benefit analysis of melon (egusi) seed and seed-oil yield responses to phosphorus fertilizer application. Int Res J Agric Sci Soil Sci 3:152–155

    Google Scholar 

  49. Nyakuma BB (2015) Pyrolysis kinetics of melon (Citrullus colocynthis L.) seed husk. Cent Hydrog Energy, Inst Futur Energy 1–7.

  50. Foo KY, Hameed BH (2012) Preparation and characterization of activated carbon from melon (Citrullus vulgaris) seed hull by microwave-induced NaOH activation. Desalin Water Treat 47:130–138. https://doi.org/10.1080/19443994.2012.696826

    Article  CAS  Google Scholar 

  51. Adelagun R, Berezi E, Itodo A et al (2014) Adsorption of Pb2+ from aqueous solution by modified melon (Citrullus lanatus) seed husk. Chem Mater Res 6:113–121

    Google Scholar 

  52. Nyakuma B (2017) Bioenergy potential of melon seed husks. Lignocellulose 6(1)

  53. Suleiman IY, Salihu SA, Mohammed TA (2018) Investigation of mechanical, microstructure, and wear behaviors of Al-12%Si reinforced with melon shell ash particulates. Int J Adv Manuf Technol 97(9–12):4137–4144. https://doi.org/10.1007/s00170-018-2157-9

    Article  Google Scholar 

  54. Gupta H, Gogate PR (2016) Intensified removal of copper from waste water using activated watermelon based biosorbent in the presence of ultrasound. Ultrason Sonochem 30:113–122. https://doi.org/10.1016/j.ultsonch.2015.11.016

    Article  CAS  Google Scholar 

  55. Rahimdokht M, Pajootan E, Arami M (2016) Application of melon seed shell as a natural low-cost adsorbent for the removal of methylene blue from dye-bearing wastewaters: optimization, isotherm, kinetic, and thermodynamic. Desalin Water Treat 57(38):18049–18061. https://doi.org/10.1080/19443994.2015.1086698

    Article  CAS  Google Scholar 

  56. Orjiakor PI, Igborbgor CJ, Ogu GI (2017) Palm oil effluents bio-ethanol yielding potentials of melon seed peels using fungal isolates from palm oil effluents. Int J Biol Sci Technol 9(3):18–25

    Google Scholar 

  57. Ahile UJ, Adejo SO, Ubwa ST, Iorhuna TB, Tyohemba RL, Ikyagh MG, Utange PI (2018) Kinetics and adsorption studies of tetracycline from aqueous solution using melon husk. IOSR J Appl Chem 11(2):26–35. https://doi.org/10.9790/5736-1102022635

    Article  CAS  Google Scholar 

  58. Opurum JI, Cookey GA, Obunwo CC (2019) Adsorption of Pb (II) ions from aqueous solution by citric acid modified and unmodified Cucumeropsis manii (melon) pod husks. J Chem Soc Niger 44(6):987–995

    Google Scholar 

  59. Ahmed A, Afolabi EA, Garba MU, Musa U, Alhassan M, Ishaq K (2019) Effect of particle size on thermal decomposition and devolatilization kinetics of melon seed shell. Chem Eng Commun 206(9):1228–1240. https://doi.org/10.1080/00986445.2018.1555530

    Article  CAS  Google Scholar 

  60. Shakoor MB, Niazi NK, Bibi I, Shahid M, Sharif F, Bashir S, Shaheen SM, Wang H, Tsang DCW, Ok YS, Rinklebe J (2018) Arsenic removal by natural and chemically modified water melon rind in aqueous solutions and groundwater. Sci Total Environ 645:1444–1455. https://doi.org/10.1016/j.scitotenv.2018.07.218

    Article  CAS  Google Scholar 

  61. Nyakuma BB, Roozbahani F, Oladokun O, Aminu Dodo Y, Elnafaty AS, Ivase TJP (2018) Kinetic analysis of melon seed husk using non-isothermal thermogravimetric analysis. Mater Today Proc 5:23249–23257. https://doi.org/10.1016/j.matpr.2018.11.057

    Article  CAS  Google Scholar 

  62. Aigbodion VS, Atuanya CU (2016) Improving the properties of epoxy/melon shell bio-composites: effect weight percentage and form of melon shell particles. Polym Bull 73(12):3305–3317. https://doi.org/10.1007/s00289-016-1657-8

    Article  CAS  Google Scholar 

  63. Giwa SO, Adama KO, Nwaokocha CN et al (2016) Characterization and flow behaviour of sandbox (Hura crepitans Linn) seed oil and its methyl esters. Int Energy J 16:65–72

    Google Scholar 

  64. Giwa S, Ogunbona C (2014) Sweet almond (Prunus amygdalus “dulcis”) seeds as a potential feedstock for Nigerian biodiesel automotive project. Rev Ambient Agua 9:37–45. https://doi.org/10.4136/ambi-agua.1272

    Article  CAS  Google Scholar 

  65. Samuel OD, Giwa SO (2016) El-Suleiman A (2016) Optimization of coconut oil ethyl esters reaction variables and prediction model of its blends with diesel fuel for density and kinematic viscosity. Biofuels. 7:723–733. https://doi.org/10.1080/17597269.2016.1192445

    Article  CAS  Google Scholar 

  66. Giwa SO, Adekomaya SO, Adama KO, Mukaila MO (2015) Prediction of selected biodiesl fuel properties using artificial neural network. Front Energy 9:433–445

    Article  Google Scholar 

  67. Verma P, Sharma MP (2016) Review of process parameters for biodiesel production from different feedstocks. Renew Sust Energ Rev 62:1063–1071. https://doi.org/10.1016/j.rser.2016.04.054

    Article  CAS  Google Scholar 

  68. Yesilyurt MK (2018) The evaluation of a direct injection diesel engine operating with waste cooking oil biodiesel in point of the environmental and enviroeconomic aspects. Energy Sources, Part A Recover Util Environ Eff 40:654–661. https://doi.org/10.1080/15567036.2018.1454546

    Article  CAS  Google Scholar 

  69. Kadir M, Cesur C (2020) Biodiesel synthesis from Styrax officinalis L. seed oil as a novel and potential non-edible feedstock: a parametric optimization study through the Taguchi technique. Fuel 265:117025. https://doi.org/10.1016/j.fuel.2020.117025

    Article  CAS  Google Scholar 

  70. Hajjari M, Tabatabaei M, Aghbashlo M, Ghanavati H (2017) A Review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization. Renew Sust Energ Rev 72:445–464. https://doi.org/10.1016/j.rser.2017.01.034

    Article  CAS  Google Scholar 

  71. Sajjadi B, Raman AAA, Arandiyan H (2016) A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: composition, specifications and prediction models. Renew Sust Energ Rev 63:62–92. https://doi.org/10.1016/j.rser.2016.05.035

    Article  CAS  Google Scholar 

  72. Yesilyurt MK, Arslan M, Eryilmaz T (2018) Application of response surface methodology for the optimization of biodiesel production from yellow mustard (Sinapis Alba L.) seed oil. Int J Green Energy 1–12. https://doi.org/10.1080/15435075.2018.1532431

  73. Aliozo OS, Emembolu LN, Onukwuli OD (2017) Optimization of melon oil methyl ester production using response surface methodology. Biofuels Eng 2(1):1–10. https://doi.org/10.1515/bfuel-2017-0001

    Article  Google Scholar 

  74. Schinas P, Karavalakis G, Davaris C, Anastopoulos G, Karonis D, Zannikos F, Stournas S, Lois E (2009) Pumpkin (Cucurbita pepo L.) seed oil as an alternative feedstock for the production of biodiesel in Greece. Biomass Bioenergy 33:44–49. https://doi.org/10.1016/j.biombioe.2008.04.008

    Article  CAS  Google Scholar 

  75. Sokoto MA, Hassan LG, Salleh M et al (2013) Quality assessment and optimization of biodiesel from Lagenaria Vulgaris (Calabash) seeds oil. Int J Pure Appl Sci Technol 15:55–66

    CAS  Google Scholar 

  76. Aktaş A, Sekmen Y, Sekmen P (2010) Biodiesel production from waste melon seeds and using it as alternative fuel in direct injection diesel engine. J Energy Inst 83:69–74. https://doi.org/10.1179/014426010X12682307291263

    Article  CAS  Google Scholar 

  77. Hairuddin AA, Tobib HM, Fariza Z et al (2019) The performance of a single-cylinder diesel engine fuelled with egusi based biodiesel. IOP Conf Ser Mater Sci Eng 469:012045. https://doi.org/10.1088/1757-899X/469/1/012045

    Article  Google Scholar 

  78. Chen W, Wang Y, Ding M, Shi S, Yang Z (2017) Crystallization behaviors and rheological properties of biodiesel derived from methanol and ethanol. Fuel 207:503–509. https://doi.org/10.1016/j.fuel.2017.06.121

    Article  CAS  Google Scholar 

  79. Chen W, Chen J (2016) Crystallization behaviors of biodiesel in relation to its rheological properties. Fuel 171:178–185. https://doi.org/10.1016/j.fuel.2015.12.049

    Article  CAS  Google Scholar 

  80. Adewale P, Christopher LP (2017) Thermal and rheological properties of crude tall oil for use in biodiesel production. Processes 5(4):1–12. https://doi.org/10.3390/pr5040059

    Article  CAS  Google Scholar 

  81. Tchameni AP, Zhao L, Ribeiro JXF, Li T (2018) Predicting the rheological properties of waste vegetable oil biodiesel-modified water-based mud using artificial neural network. Geosystem Eng 22:101–111. https://doi.org/10.1080/12269328.2018.1490209

    Article  CAS  Google Scholar 

  82. Hajra B, Kumar M, Pathak AK, Guria C (2016) Surface tension and rheological behavior of sal oil methyl ester biodiesel and its blend with petrodiesel fuel. Fuel 166:130–142. https://doi.org/10.1016/j.fuel.2015.10.109

    Article  CAS  Google Scholar 

  83. Li H, Wang J, Shen B (2017) Environmental effects the rheological properties of biodiesel derived from cottonseed oil. Energy Sources, Part A Recover Util Environ Eff 38(21):3181–3186. https://doi.org/10.1080/15567036.2011.590850

    Article  CAS  Google Scholar 

  84. Pelegrini BL, Sudati EA, Ré F, Moreira AL, Ferreira ICP, Sampaio AR, Kimura NM, Lima MMS (2017) Thermal and rheological properties of soapberry Sapindus saponaria L. (Sapindaceae) oil biodiesel and its blends with petrodiesel. Fuel 199:627–640. https://doi.org/10.1016/j.fuel.2017.02.059

    Article  CAS  Google Scholar 

  85. Dominguez YD, Garcia DT, Perez LG et al (2019) Rheological behavior and properties of biodiesel and vegetable oil from Moringo oleifera Lam. Afinidad 76:83–90

    Google Scholar 

  86. Kadir M, Zeki Y, Mustafa Y (2020) The performance, emissions , and combustion characteristics of an unmodified diesel engine running on the ternary blends of pentanol/safflower oil biodiesel/diesel fuel. J Therm Anal Calorim 140:2903–2942. https://doi.org/10.1007/s10973-020-09376-6

    Article  CAS  Google Scholar 

  87. Yesilyurt MK, Eryilmaz T, Arslan MA (2018) Comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/n-pentanol (C5 alcohol) fuel blends. Energy 165:1332–1351. https://doi.org/10.1016/j.energy.2018.10.100

    Article  CAS  Google Scholar 

  88. Yesilyurt MK, Arslan M (2019) Analysis of the fuel injection pressure effects on energy and exergy efficiencies of a diesel engine operating with biodiesel. Biofuels 10:643–655. https://doi.org/10.1080/17597269.2018.1489674

    Article  CAS  Google Scholar 

  89. Yesilyurt MK (2019) The effects of the fuel injection pressure on the performance and emission characteristics of a diesel engine fuelled with waste cooking oil biodiesel-diesel blends. Renew Energy 132:649–666. https://doi.org/10.1016/j.renene.2018.08.024

    Article  CAS  Google Scholar 

  90. Kadir M, Aydin M (2020) Experimental investigation on the performance, combustion and exhaust emission characteristics of a compression-ignition engine fueled with cottonseed oil biodiesel/diethyl ether/diesel fuel blends. Energy Convers Manag 205:112355. https://doi.org/10.1016/j.enconman.2019.112355

    Article  CAS  Google Scholar 

  91. Nasiru A, Oluwasegun A (2019) Phytochemical, nutritional and amino acid composition of Citrullus lanatus (cucurbitaceae) seeds cultivated in south-south Nigeria. J Pharmacogn Phytochem 8(3):3738–3740

    Google Scholar 

  92. Yaşar F (2020) Comparision of fuel properties of biodiesel fuels produced from different oils to determine the most suitable feedstock type. Fuel 264:116817. https://doi.org/10.1016/j.fuel.2019.116817

    Article  CAS  Google Scholar 

  93. Essien E, Eduok U (2013) Chemical analysis of Citrullus lanatus seed oil obtained from Southern Nigeria. Elixir Org Chem 54:12700–12703

    Google Scholar 

  94. Ahmad Z, Rafay M, Shaheen MR et al (2019) Comparative study on extraction and characterization of melon (Cucumis melo) seed oil and its application in baking. J Anim Plant Sci 29(3):848–853

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taiwo O. Akanbi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giwa, S.O., Akanbi, T.O. A Review on Food Uses and the Prospect of Egusi Melon for Biodiesel Production. Bioenerg. Res. 13, 1031–1045 (2020). https://doi.org/10.1007/s12155-020-10145-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10145-4

Keywords

Navigation