Skip to main content
Log in

Comprehensively Understanding Enzymatic Hydrolysis of Lignocellulose and Cellulase–Lignocellulose Adsorption by Analyzing Substrates’ Physicochemical Properties

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

In order to understand the relationship among enzymatic hydrolysis of lignocellulose, cellulase adsorption characteristics, and physicochemical properties of lignocellulose, a series of investigations was conducted, including composition, surface morphology, chemical bonds, functional groups, pore characteristics, cellulase accessibility, productive cellulase adsorption, cellulase adsorption isotherm, and kinetics of sodium hydroxide (NaOH) and ammonia-treated sugarcane bagasse (SCB) substrates. The results showed that the hydrolysis efficiency of NaOH-treated SCB (87.85%) was higher than that of ammonia-treated SCB (33.65%) and NaOH-treated SCB had less lignin, looser surface, and larger specific surface area and pore volume. This suggested that better accessibility of NaOH-treated SCB to cellulase resulted in higher enzymatic hydrolysis efficiency. The data on cellulase adsorption showed that NaOH-treated SCB had more productive adsorption, less non-productive adsorption, better adsorption capacity, and smaller binding strength with cellulase, which was also beneficial to the enhancement of enzymatic hydrolysis of NaOH-treated SCB. In addition, it was found that once cellulase molecules were adsorbed onto these two SCB substrates, two types of bonds as follows might be formed: one was C-OR (R means organic groups) and the other was C-OH··NH that was a type of hydrogen bond formed between the hydrogen of amino group in cellulase and the hydroxyl group in lignocellulose. This study would help further learn the link between lignocellulosic substrate characteristics and enzymatic hydrolysis or cellulase adsorption properties of lignocellulose.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Cai C, Bao Y (2019) Recovering cellulase and increasing glucose yield during lignocellulosic hydrolysis using lignin-MPEG with a sensitive pH response. Green Chem 21:1141–1151. https://doi.org/10.1039/c8gc04059a

    Article  CAS  Google Scholar 

  2. Kumari D, Singh R (2018) Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew Sust Energ Rev 90:877–891. https://doi.org/10.1016/j.rser.2018.03.111

    Article  CAS  Google Scholar 

  3. Chundawat SPS, Bellesia G, Uppugundla N, Dale BE (2011) Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc 133(29):11163–11174. https://doi.org/10.1021/ja2011115

    Article  CAS  Google Scholar 

  4. Karimi K, Taherzadeh MJ (2016) A critical review on analysis in pretreatment of lignocelluloses: degree of polymerization, adsorption/desorption, and accessibility. Bioresour Technol 203:348–356. https://doi.org/10.1016/j.biortech.2015.12.035

    Article  CAS  Google Scholar 

  5. Chundawat S, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol 2(2):121–145. https://doi.org/10.1146/annurev-chembioeng-061010-114205

    Article  CAS  Google Scholar 

  6. Wang H, Wang B, Wen J, Wang S, Shi Q, Sun R (2018) Green and efficient conversion strategy of eucalyptus based on mechanochemical pretreatment. Energ Convers Manage 175:112–120. https://doi.org/10.1016/j.enconman.2018.09.002

    Article  CAS  Google Scholar 

  7. Fei X, Jia W, Wang J, Chen T, Ling Y (2020) Study on enzymatic hydrolysis efficiency and physicochemical properties of cellulose and lignocellulose after pretreatment with electron beam irradiation. Int J Biol Macromol 145:733–739. https://doi.org/10.1016/j.ijbiomac.2019.12.232

    Article  CAS  Google Scholar 

  8. Wang W, Zhuang X, Yuan Z, Qi W, Yu Q, Wang Q (2016) Structural changes of lignin after liquid hot water pretreatment and its effect on the enzymatic hydrolysis. Biomed Res Int 2016:1–7. https://doi.org/10.1155/2016/8568604

    Article  CAS  Google Scholar 

  9. Lu M, Li J, Han L, Xiao W (2019) An aggregated understanding of cellulase adsorption and hydrolysis for ball-milled cellulose. Bioresour Technol 273:1–7. https://doi.org/10.1016/j.biortech.2018.10.037

    Article  CAS  Google Scholar 

  10. Zhan X, Cai C, Pang Y, Qiu X (2019) Effect of the isoelectric point of pH-responsive lignin-based amphoteric surfactant on the enzymatic hydrolysis of lignocellulose. Bioresour Technol 283:112–119. https://doi.org/10.1016/j.biortech.2019.03.026

    Article  CAS  Google Scholar 

  11. Cheng L, Hu X, Gu Z (2019) Characterization of physicochemical properties of cellulose from potato pulp and their effects on enzymatic hydrolysis by cellulose. Int J Biol Macromol 131:564–571. https://doi.org/10.1016/j.ijbiomac.2019.02.164

    Article  CAS  Google Scholar 

  12. Yu H, Hou J, S. Hou Yu, Nie S (2019) Comprehensive understanding of the non-productive adsorption of cellulolytic enzymes onto lignins isolated from furfural residues. Cellulose 26: 3111–3125. https://doi.org/10.1007/s10570-019-02323-1.

  13. Mou H, Wu S (2016) Comparison of organosolv and hydrotropic pretreatments of eucalyptus for enhancing enzymatic saccharification. Bioresour Technol 220:637–640. https://doi.org/10.1016/j.biortech.2016.08.072

    Article  CAS  Google Scholar 

  14. Zhang H, Chen L, Li J (2017) Quantitative characterization of enzyme adsorption and hydrolytic performance for ultrafine grinding pretreated corn stover. Bioresour Technol 234:23–32. https://doi.org/10.1016/j.biortech.2017.03.013

    Article  CAS  Google Scholar 

  15. Liu Z, Lan T, Li H, Gao X, Zhang H (2017) Effect of bisulfite treatment on composition, structure, enzymatic hydrolysis and cellulase adsorption profiles of sugarcane bagasse. Bioresour Technol 223:27–33. https://doi.org/10.1016/j.biortech.2016.10.029

    Article  CAS  Google Scholar 

  16. Liu Y, Xu J, Zhang Y, Liang C, He M, Yuan Z (2016) Reinforced alkali-pretreatment for enhancing enzymatic hydrolysis of sugarcane bagasse. Fuel Process Technol 143:1–6. https://doi.org/10.1016/j.fuproc.2015.11.004

    Article  CAS  Google Scholar 

  17. Xin D, Jia L, Zhao C, Zhang J (2014) Behavior of cellulose and xylan in aqueous ammonia pretreatment. Appl Biochem Biotechnol 174:2626–2638. https://doi.org/10.1007/s12010-014-1214-6

    Article  CAS  Google Scholar 

  18. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure (LAP-NREL)

  19. Du R, Su R, Li X, Tantai X, Liu Z, Yang J, Qi W, He Z (2012) Controlled adsorption of cellulase onto pretreated corncob by pH adjustment. Cellulose 19:371–380. https://doi.org/10.1007/s10570-012-9653-0

    Article  CAS  Google Scholar 

  20. Lou H, Zhu J, Lan T (2013) pH-Induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocelluloses. Chemsuschem 6(5):919–927. https://doi.org/10.1002/cssc.201200859

    Article  CAS  Google Scholar 

  21. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. https://doi.org/10.1177/004051755902901003

    Article  CAS  Google Scholar 

  22. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10–516. https://doi.org/10.1186/1754-6834-3-10

    Article  CAS  Google Scholar 

  23. Lin W, Xing S, Jin Y, Lu X, Huang C, Yong Q (2020) Insight into understanding the performance of deep eutectic solvent pretreatment on improving enzymatic digestibility of bamboo residues. Bioresour Technol 306:123163–123516. https://doi.org/10.1016/j.biortech.2020.123163

    Article  CAS  Google Scholar 

  24. Vanitjinda G, Nimchua T, Sukyai P (2019) Effect of xylanase-assisted pretreatment on the properties of cellulose and regenerated cellulose films from sugarcane bagasse. Int J Biol Macromol 122:503–516. https://doi.org/10.1016/j.ijbiomac.2018.10.191

    Article  CAS  Google Scholar 

  25. Zhang T, Zhu M (2016) Enhancing enzymolysis and fermentation efficiency of sugarcane bagasse by synergistic pretreatment of Fenton reaction and sodium hydroxide extraction. Bioresour Technol 214:769–777. https://doi.org/10.1016/j.biortech.2016.05.032

    Article  CAS  Google Scholar 

  26. Saratale GD, Saratale RG, Kim SH (2018) in the preparation of sugarcane bagasse feedstock for biohydrogen production and process optimization. Int J Hydrogen Energ 43:11470–11483. https://doi.org/10.1016/j.ijhydene.2018.01.187

    Article  CAS  Google Scholar 

  27. Liu H, Pang B, Zhao Y, Lu J, Han Y, Wang H (2018) Comparative study of two different alkali-mechanical pretreatments of corn stover for bioethanol production. Fuel 221:21–27. https://doi.org/10.1016/j.fuel.2018.02.088

    Article  CAS  Google Scholar 

  28. Ahmadzadeh S, Nasirpour A, Harchegani MB (2018) Effect of electrohydrodynamic technique as a complementary process for cellulose extraction from bagasse: crystalline to amorphous transition. Carbohydr Polym 188:188–196. https://doi.org/10.1016/j.carbpol.2018.01.109

    Article  CAS  Google Scholar 

  29. Yamashita DC, Kimura S, Samejima M (2016) Effect of ammonia treatment on enzymatic hydrolysis and cell wall components of Erianthus. Polym Degrad Stab 133:243–248. https://doi.org/10.1016/j.polymdegradstab.2016.09.009

    Article  CAS  Google Scholar 

  30. Ling Z, Chen S, Zhang X, Xu F (2017) Exploring crystalline-structural variations of cellulose during alkaline pretreatment for enhanced enzymatic hydrolysis. Bioresour Technol 224:611–617. https://doi.org/10.1016/j.biortech.2016.10.064

    Article  CAS  Google Scholar 

  31. Wang W, Tan X, Yu Q, Yuan Z (2018) Effect of stepwise lignin removal on the enzymatic hydrolysis and cellulase adsorption. Ind Crop Prod 122:16–22. https://doi.org/10.1016/j.indcrop.2018.05.053

    Article  CAS  Google Scholar 

  32. Yang M, Wang J, Hou X, Wu J (2017) Exploring surface characterization and electrostatic property of hybrid Pennisetum during alkaline sulfite pretreatment for enhanced enzymatic hydrolysability. Bioresour Technol 244:1166–1172. https://doi.org/10.1016/j.biortech.2017.08.046

    Article  CAS  Google Scholar 

  33. Zhang Q, Wei Y, Han H, Weng C (2018) Enhancing bioethanol production from water hyacinth by new combined pretreatment methods. Bioresour Technol 251:358–363. https://doi.org/10.1016/j.biortech.2017.12.085

    Article  CAS  Google Scholar 

  34. Li J, Zhang S, Li H (2018) Cellulase pretreatment for enhancing cold caustic extraction-based separation of hemicelluloses and cellulose from cellulosic fibers. Bioresour Technol 251:1–6. https://doi.org/10.1016/j.biortech.2017.12.026

    Article  CAS  Google Scholar 

  35. Grethlein EH (1985) The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Nat Biotechnol 3:155–160. https://doi.org/10.1038/nbt0285-155

    Article  CAS  Google Scholar 

  36. Wang J, Hao X, Wen P, Zhang T, Zhang J (2020) Adsorption and desorption of cellulase on/from lignin pretreated by dilute acid with different severities. Ind Crop Prod 148:112309. https://doi.org/10.1016/j.indcrop.2020.112309

    Article  CAS  Google Scholar 

  37. Gao W, Xiang Z, Chen K, Yang R, Yang F (2015) Effect of depth beating on the fiber properties and enzymatic saccharification efficiency of softwood kraft pulp. Carbohydr Polym 127:400–406. https://doi.org/10.1016/j.carbpol.2015.04.005

    Article  CAS  Google Scholar 

  38. Li T, Liu N, Qu X (2018) Visualizing cellulase adsorption and quantitatively determining cellulose accessibility with an updated fungal cellulose-binding module-based fluorescent probe protein. Biotechnol Biofuels 11:105–110. https://doi.org/10.1186/s13068-018-1105-0

    Article  CAS  Google Scholar 

  39. Lan T, Zheng W, Dong Y, Jiang Y, Qin Y, Yue G, Zhou H (2020) Exploring surface properties of substrate to understand the difference in enzymatic hydrolysis of sugarcane bagasse treated with dilute acid and sulfite. Ind Crop Prod 145:112–128. https://doi.org/10.1016/j.indcrop.2020.112128

    Article  CAS  Google Scholar 

  40. Machado DL, Moreira Neto J, da Cruz Pradella JG, Bonnmi A, Rabelo SC, da Costa AC (2015) Adsorption characteristics of cellulase and β-glucosidase on Avicel, pretreated sugarcane bagasse, and lignin. Biotechnol Appl Biochem 62(5):681–689. https://doi.org/10.1002/bab.1307

    Article  CAS  Google Scholar 

  41. Zheng W, Lan T, Li H, Yue G, Zhou H (2020) Exploring why sodium lignosulfonate influenced enzymatic hydrolysis efficiency of cellulose from the perspective of substrate–enzyme adsorption. Biotechnol Biofuels 13:19. https://doi.org/10.1186/s13068-020-1659-5

    Article  CAS  Google Scholar 

  42. Paul SK, Chakraborty S (2019) Mixing effects on the kinetics of enzymatic hydrolysis of lignocellulosic Sunn hemp fibres for bioethanol production. Chem Eng J 377:120103–120689. https://doi.org/10.1016/j.cej.2018.10.040

    Article  CAS  Google Scholar 

  43. Jia L, Qin Y, Zhang T, Zhang J (2019) Alkaline post-incubation improves cellulose hydrolysis after gamma-valerolactone/water pretreatment. Bioresour Technol 278:440–443. https://doi.org/10.1016/j.biortech.2019.01.141

    Article  CAS  Google Scholar 

  44. Zhang D, Yang Q, Zhu J (2013) Sulfite (SPORL) pretreatment of switchgrass for enzymatic saccharification. Bioresour Technol 129:127–134. https://doi.org/10.1016/j.biortech.2012.11.031

    Article  CAS  Google Scholar 

  45. Li Y, Qi B, Luo J (2016) Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis. Bioresour Technol 200:272–278. https://doi.org/10.1016/j.biortech.2015.10.038

    Article  CAS  Google Scholar 

  46. Zheng Y, Zhang R, Pan Z (2016) Investigation of adsorption kinetics and isotherm of cellulase and β-glucosidase on lignocellulosic substrates. Biomass Bioenergy 91:1–9. https://doi.org/10.1016/j.biombioe.2016.04.014

    Article  CAS  Google Scholar 

  47. Lin X, Wu L, Huang S, Qin Y, Qiu X, Lou H (2019) Effect of lignin-based amphiphilic polymers on the cellulase adsorption and enzymatic hydrolysis kinetics of cellulose. Carbohydr Polym 207:52–58. https://doi.org/10.1016/j.carbpol.2018.11.070

    Article  CAS  Google Scholar 

  48. Jia L, Qin Y, Jia W, Zhang J (2020) Lignin extracted by γ-valerolactone/water from corn stover improves cellulose enzymatic hydrolysis. Bioresour Technol 302:122901. https://doi.org/10.1016/j.biortech.2020.122901

    Article  CAS  Google Scholar 

  49. Xu C, Liu F, Asraful Alam M, Chen H, Yang Y, Liang C, Xu H, Huang S, Xu J, Wang Z (2020) Comparative study on the properties of lignin isolated from different pretreated sugarcane bagasse and its inhibitory effects on enzymatic hydrolysis. Int J Biol Macromol 146:132–140. https://doi.org/10.1016/j.ijbiomac.2019.12.270

    Article  CAS  Google Scholar 

  50. Hao X, Li Y, Wang J, Qin Y, Zhang J (2019) Adsorption and desorption of cellulases on/from lignin-rich residues from corn stover. Ind Crop Prod 139:111559. https://doi.org/10.1016/j.indcrop.2019.111559

    Article  CAS  Google Scholar 

  51. Yu H, Xu Y, Hou J, Nie S, Liu S, Wu Q, Liu Y, Liu Y, Yu S (2020) Fractionation of corn stover for efficient enzymatic hydrolysis and producing platform chemical using p-toluenesulfonic acid/water pretreatment. Ind Crop Prod 145:111961. https://doi.org/10.1016/j.indcrop.2019.111961

    Article  CAS  Google Scholar 

  52. Ying W, Shi Z (2018) Effect of alkaline lignin modification on cellulase-lignin interactions and enzymatic saccharification yield. Biotechnol Biofuels 11:214–224. https://doi.org/10.1186/s13068-018-1217-6

    Article  CAS  Google Scholar 

  53. Yu H, Li X, Zhang W (2015) Hydrophilic pretreatment of furfural residues to improve enzymatic hydrolysis. Cellulose 22:1675–1686. https://doi.org/10.1007/s10570-015-0602-6

    Article  CAS  Google Scholar 

  54. Crist BV (2005) Handbooks of monochromatic XPS spectra-commercially pure binary oxides, XPS International LLC (Web-version), CA, USA.

  55. Zhang JH, Zhang BX, Zhang JQ, Ouyang PK (2010) Effect of phosphoric acid pretreatment on enzymatic hydrolysis of microcrystalline cellulose. Biotechnol Adv 28(5):613–619. https://doi.org/10.1016/j.biotechadv.2010.05.010

    Article  CAS  Google Scholar 

  56. Sipponen MH, Rahikainen J, Leskinen T, Pihlajaniemi V, Mattinen M, Lange H, Crestini H, Österberg MO (2017) Structural changes of lignin in biorefinery pretreatments and consequences to enzyme-lignin interaction. Nord Pulp Pap Res J 32:550–571. https://doi.org/10.3183/npprj-2017-32-04_p550-571_sipponen

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant No. 21766014) and the State Key Laboratory of Pulp and Paper Engineering (Grant No. 201811).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 183 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, T., Jiang, Y., Zheng, W. et al. Comprehensively Understanding Enzymatic Hydrolysis of Lignocellulose and Cellulase–Lignocellulose Adsorption by Analyzing Substrates’ Physicochemical Properties. Bioenerg. Res. 13, 1108–1120 (2020). https://doi.org/10.1007/s12155-020-10141-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10141-8

Keywords

Navigation