Skip to main content
Log in

Oilseed Enzymatic Pretreatment for Efficient Oil Recovery in Biodiesel Production Industry: a Review

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Biodiesel is an alternative to fossil diesel, non-toxic, and less pollutant. The production of biodiesel occurs with the use of oils, which are extracted from oleaginous seeds such as soybean, rapeseed, and palm fruit. The extraction of oils from oilseeds is one bottleneck of biodiesel production impacting on significant processes’ losses and productivity. This review analyzes different technologies to improve the oil extraction focusing on the enzyme-assisted aqueous extraction (EAAE) methods. EAAE is an environmentally friendly technology that takes advantage of the degradation efficiency of the enzymes, in this case hemicellulases preparations, which specifically degrade different structures that are present in vegetable cell walls to improve oil extraction from oilseeds. The enzymes used in this process are industrially produced and are highly efficient, but with high costs. The use of agro-industrial subproducts or the improvement of the enzymes’ producing strains could be an interesting solution for viable enzymatic preparations’ production to attend the biodiesel industries’ demand. EAAE treatment also shows great potential in techno-economic analysis allowing a faster recovery of profits and at a smaller production scale than the hexane extraction methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bhuiya MMK, Rasul MG, Khan MMK, Ashwath N, Azad AK (2016) Prospects of 2nd generation biodiesel as a sustainable fuel - part: 1 selection of feedstocks, oil extraction techniques and conversion technologies. Renew Sust Energ Rev 55:1109–1128. https://doi.org/10.1016/j.rser.2015.04.163

    Article  CAS  Google Scholar 

  2. Kafuku G, Mbarawa M (2010) Alkaline catalyzed biodiesel production from Moringa oleifera oil with optimized production parameters. Appl Energy 87:2561–2565. https://doi.org/10.1016/j.apenergy.2010.02.026

    Article  CAS  Google Scholar 

  3. Bergmann JC, Tupinambá DD, Costa OYA, Almeida JRM, Barreto CC, Quirino BF (2013) Biodiesel production in Brazil and alternative biomass feedstocks. Renew Sust Energ Rev 21:411–420. https://doi.org/10.1016/j.rser.2012.12.058

    Article  Google Scholar 

  4. Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15. https://doi.org/10.1016/S0960-8524(99)00025-5

    Article  CAS  Google Scholar 

  5. Hama S, Kondo A (2013) Enzymatic biodiesel production: an overview of potential feedstocks and process development. Bioresour Technol 135:386–395. https://doi.org/10.1016/j.biortech.2012.08.014

    Article  CAS  Google Scholar 

  6. Balat M (2006) Fuel characteristics and the use of biodiesel as a transportation fuel fuel characteristics and the use of biodiesel. Energy Sources A 28:37–41. https://doi.org/10.1080/009083190951474

    Article  CAS  Google Scholar 

  7. Veljković VB, Biberdžić MO, Banković-Ilić IB, Djalović IG, Tasić MB, Nježić ZB, Stamenković OS (2018) Biodiesel production from corn oil: a review. Renew Sust Energ Rev 91:531–548. https://doi.org/10.1016/j.rser.2018.04.024

    Article  CAS  Google Scholar 

  8. Abbaszaadeh A, Ghobadian B, Omidkhah MR, Najafi G (2012) Current biodiesel production technologies: a comparative review. Energy Convers Manag 63:138–148. https://doi.org/10.1016/j.enconman.2012.02.027

    Article  CAS  Google Scholar 

  9. Gog A, Roman M, Toşa M, Paizs C, Irimie FD (2012) Biodiesel production using enzymatic transesterification - current state and perspectives. Renew Energy 39:10–16. https://doi.org/10.1016/j.renene.2011.08.007

    Article  CAS  Google Scholar 

  10. Öner C, Altun Ş (2009) Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine. Appl Energy 86:2114–2120. https://doi.org/10.1016/j.apenergy.2009.01.005

    Article  CAS  Google Scholar 

  11. Chattopadhyay S, Karemore A, Das S, Deysarkar A, Sen R (2011) Biocatalytic production of biodiesel from cottonseed oil: standardization of process parameters and comparison of fuel characteristics. Appl Energy 88:1251–1256. https://doi.org/10.1016/j.apenergy.2010.10.007

    Article  CAS  Google Scholar 

  12. Ron Kotrba (2014) Biodiesel Magazine - the latest news and data about biodiesel production. http://www.biodieselmagazine.com/articles/53729/2012-global-biodiesel-production-rises-slightly. Accessed 27 Dec 2016

  13. Amalia Kartika I, Pontalier PY, Rigal L (2006) Extraction of sunflower oil by twin screw extruder: screw configuration and operating condition effects. Bioresour Technol 97:2302–2310. https://doi.org/10.1016/j.biortech.2005.10.034

    Article  CAS  Google Scholar 

  14. Torres-Valenzuela LS, Ballesteros-Gómez A, Rubio S (2020) Green solvents for the extraction of high added-value compounds from agri-food waste. Food Eng Rev 12:83–100. https://doi.org/10.1007/s12393-019-09206-y

    Article  CAS  Google Scholar 

  15. De Moura JMLN, Campbell K, Mahfuz A et al (2008) Enzyme-assisted aqueous extraction of oil and protein from soybeans and cream de-emulsification. J Am Oil Chem Soc 85:985–995. https://doi.org/10.1007/s11746-008-1282-2

    Article  CAS  Google Scholar 

  16. Passos CP, Yilmaz S, Silva CM, Coimbra MA (2009) Enhancement of grape seed oil extraction using a cell wall degrading enzyme cocktail. Food Chem 115:48–53. https://doi.org/10.1016/j.foodchem.2008.11.064

    Article  CAS  Google Scholar 

  17. Latif S, Anwar F (2009) Effect of aqueous enzymatic processes on sunflower oil quality. J Am Oil Chem Soc 86:393–400. https://doi.org/10.1007/s11746-009-1357-8

    Article  CAS  Google Scholar 

  18. Leung DYC, Wu X, Leung MKH (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87:1083–1095. https://doi.org/10.1016/j.apenergy.2009.10.006

    Article  CAS  Google Scholar 

  19. ANP (2014) Brazilian statistical yearbook of oil, gas and biofuels (in Portuguese). 236

  20. Major biodiesel producing countries 2017 | Statistic. https://www.statista.com/statistics/271472/biodiesel-production-in-selected-countries/. Accessed 12 Nov 2018

  21. Koplow D (2006) Biofuels-at what cost? Prepared for: the Global Subsidies Initiative (GSI) of the International Institute for Sustainable Development (IISD) Geneva, Switzerland

  22. Mardhiah HH, Ong HC, Masjuki HH, Lim S, Lee HV (2017) A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils. Renew Sust Energ Rev 67:1225–1236. https://doi.org/10.1016/j.rser.2016.09.036

    Article  CAS  Google Scholar 

  23. Atadashi IM, Aroua MK, Abdul Aziz AR, Sulaiman NMN (2012) Production of biodiesel using high free fatty acid feedstocks. Renew Sust Energ Rev 16:3275–3285. https://doi.org/10.1016/j.rser.2012.02.063

    Article  CAS  Google Scholar 

  24. Agarwal AK, Das LM (2001) Biodiesel development and characterization for use as a fuel in compression ignition engines. J Eng Gas Turbines Power 123:440–447. https://doi.org/10.1115/1.1364522

    Article  CAS  Google Scholar 

  25. Hasan MM, Rahman MM (2017) Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: a review. Renew Sust Energ Rev 74:938–948. https://doi.org/10.1016/j.rser.2017.03.045

    Article  CAS  Google Scholar 

  26. OECD/FAO (2015) Biofuels. Agric outlook 144. https://doi.org/10.1787/agr_outlook-2015-13-en

  27. Saturnino HM, Pacheco DD, Kakida J, Tominaga NG (2005) Potencialidades de oleaginosas para produção de biodiesel 229 44–78

  28. USDA (2016) Monthly biodiesel production report - Energy Information Administration. http://www.eia.gov/biofuels/biodiesel/production/. Accessed 27 Dec 2016

  29. CNPE publica resolução do B15 - Ubrabio. https://ubrabio.com.br/2018/11/08/cnpe-publica-resolucao-do-b15/. Accessed 12 Nov 2018

  30. Umbrabio (2016) CNPE fixa data para início do aumento da mistura de biodiesel - UBRABIO. http://www.ubrabio.com.br/1891/Noticias/CnpeFixaDataParaInicioDoAumentoDaMisturaDeBiodiesel_258416/. Accessed 27 Dec 2016

  31. Balat M, Balat M (2009) Political, economic and environmental impacts of biomass-based hydrogen. Int J Hydrog Energy 34:3589–3603. https://doi.org/10.1016/j.ijhydene.2009.02.067

    Article  CAS  Google Scholar 

  32. Yustianingsih L, Zullaikah S, Ju YH (2009) Ultrasound assisted in situ production of biodiesel from rice bran. J Energy Inst 82:133–137. https://doi.org/10.1179/014426009x12448168550064

    Article  CAS  Google Scholar 

  33. UFOP (2018) European and world demand for biomass for the purpose of biofuel production in relation to supply in the food and feedstuff markets

  34. Issariyakul T, Dalai AK (2014) Biodiesel from vegetable oils. Renew Sust Energ Rev 31:446–471. https://doi.org/10.1016/j.rser.2013.11.001

    Article  CAS  Google Scholar 

  35. European Biofuels (2016) Oil crops for production of advanced biofuels. http://www.biofuelstp.eu/oil_crops.html. Accessed 28 Dec 2016

  36. FAOSTAT (2019) FAOSTAT. http://www.fao.org/faostat/en/#data/QC/visualize. Accessed 9 Nov 2018

  37. FAOSTAT. http://www.fao.org/faostat/en/#data/QC. Accessed 12 Nov 2018

  38. Shay EG (1993) Diesel fuel from vegetable oils: status and opportunities. Biomass Bioenergy 4:227–242. https://doi.org/10.1016/0961-9534(93)90080-N

    Article  CAS  Google Scholar 

  39. Shahbandeh M • Worldwide production major vegetable oils, 2012-2019 | Statista. https://www.statista.com/statistics/263933/production-of-vegetable-oils-worldwide-since-2000/. Accessed 20 Oct 2019

  40. Santori G, Di Nicola G, Moglie M, Polonara F (2012) A review analyzing the industrial biodiesel production practice starting from vegetable oil refining. Appl Energy 92:109–132. https://doi.org/10.1016/j.apenergy.2011.10.031

    Article  CAS  Google Scholar 

  41. Dukhnytskyi B (2019) World agricultural production. Ekon APK:59–65. https://doi.org/10.32317/2221-1055.201907059

  42. Santos EM, Piovesan ND, De Barros EG, Moreira MA (2013) Low linolenic soybeans for biodiesel: characteristics, performance and advantages. Fuel 104:861–864. https://doi.org/10.1016/j.fuel.2012.06.014

    Article  CAS  Google Scholar 

  43. IndexMundi Soybean Oil Production by Country in 1000 MT - Country Rankings. In: United States Dep. Agric. https://www.indexmundi.com/agriculture/?commodity=soybean-oil&graph=production. Accessed 11 Apr 2020

  44. Kinney AJ, Clemente TE (2005) Modifying soybean oil for enhanced performance in biodiesel blends. Fuel Process Technol 86:1137–1147. https://doi.org/10.1016/j.fuproc.2004.11.008

    Article  CAS  Google Scholar 

  45. Flach B, Lieberz S, Bolla S (2019) EU-28 Biofuels Annual EU Biofuels Annual 2019

    Google Scholar 

  46. Statista (2019) • Major biodiesel producing countries 2018. https://www.statista.com/statistics/271472/biodiesel-production-in-selected-countries/. Accessed 11 Apr 2020

  47. USDA (2015) World agricultural production. Circ Ser 2014:6–15

    Google Scholar 

  48. Indexmundi palm oil production by country in 1000 MT - country rankings. https://www.indexmundi.com/agriculture/?commodity=palm-oil&graph=production. Accessed 15 May 2019

  49. Indexmundi sunflowerseed oil production by country in 1000 MT - country rankings. https://www.indexmundi.com/agriculture/?commodity=sunflowerseed-oil&graph=production. Accessed 11 Apr 2020

  50. Marvey BB (2008) Sunflower-based feedstocks in nonfood applications: perspectives from olefin metathesis. Int J Mol Sci 9:1393–1406. https://doi.org/10.3390/ijms9081393

    Article  CAS  Google Scholar 

  51. Saydut A, Kafadar AB, Tonbul Y, Kaya C, Aydin F, Hamamci C (2010) Comparison of the biodiesel quality produced from refined sunflower (Helianthus annuus L) oil and waste cooking oil. Energy Explor Exploit 28:499–512. https://doi.org/10.1260/0144-5987.28.6.499

    Article  CAS  Google Scholar 

  52. Gbogouri GA, Brou K, Beugre GAM et al (2013) Assessment of the thermo-oxidation of three cucurbit seed oils by differential scanning calorimetry. Innov Rom Food Biotechnol 12:32–39

    CAS  Google Scholar 

  53. Hata S, Wiboonsirikul J, Maeda A, Kimura Y, Adachi S (2008) Extraction of defatted rice bran by subcritical water treatment. Biochem Eng J 40:44–53. https://doi.org/10.1016/j.bej.2007.11.016

    Article  CAS  Google Scholar 

  54. Zullaikah S, Lai C-C, Vali SR, Ju Y-H (2005) A two-step acid-catalyzed process for the production of biodiesel from rice bran oil. Bioresour Technol 96:1889–1896. https://doi.org/10.1016/j.biortech.2005.01.028

    Article  CAS  Google Scholar 

  55. FAOSTAT factfish castor oil seed, production quantity world statistics and data. http://www.factfish.com/statistic/castor+oil+seed,+production+quantity. Accessed 15 May 2019

  56. Showalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5:9–23. https://doi.org/10.1105/tpc.5.1.9

    Article  CAS  Google Scholar 

  57. Rosenthal A, Pyle DL, Niranjan K (1996) Aqueous and enzymatic processes for edible oil extraction. Enzym Microb Technol 19:402–420. https://doi.org/10.1016/S0141-0229(96)80004-F

    Article  CAS  Google Scholar 

  58. Ricochon G, Muniglia L (2010) Influence of enzymes on the oil extraction processes in aqueous media. Ol Corps Gras Lipides 17:356–359. https://doi.org/10.1684/ocl.2010.0337

    Article  Google Scholar 

  59. de Vries RP, Kester HCM, Poulsen CH, Benen JAE, Visser J (2000) Synergy between accessory enzymes from Aspergillus in the degradation of plant cell wall polysaccharides. Carbohydr Res 327:401–410

    Article  Google Scholar 

  60. Hamm W, Hamilton RJ, Desmet GC (2013) Edible oil processing, Second. Wiley, Oxford, UK

  61. Willems P, Kuipers NJM, De Haan AB (2008) Hydraulic pressing of oilseeds: experimental determination and modeling of yield and pressing rates. J Food Eng 89:8–16. https://doi.org/10.1016/j.jfoodeng.2008.03.023

    Article  Google Scholar 

  62. Harrington KJ, D’Arcy-Evans C (1985) Transesterification in situ of sunflower seed oil. Ind Eng Chem Prod Res Dev 24:314–318. https://doi.org/10.1021/i300018a027

    Article  CAS  Google Scholar 

  63. Nash AM, Frankel EN (1986) Limited extraction of soybeans with hexane. J Am Oil Chem Soc 63:244–246. https://doi.org/10.1007/BF02546147

    Article  CAS  Google Scholar 

  64. Zhang YL, Li S, Yin CP, Jiang DH, Yan FF, Xu T (2012) Response surface optimisation of aqueous enzymatic oil extraction from bayberry (Myrica rubra) kernels. Food Chem 135:304–308. https://doi.org/10.1016/j.foodchem.2012.04.111

    Article  CAS  Google Scholar 

  65. Domínguez H, Núñez MJ, Lema JM (1994) Enzymatic pretreatment to enhance oil extraction from fruits and oilseeds: a review. Food Chem 49:271–286. https://doi.org/10.1016/0308-8146(94)90172-4

    Article  Google Scholar 

  66. Mariano RGD, Couri S, Freitas SP (2009) Enzymatic technology to improve oil extraction from Caryocar brasiliense Camb. (pequi) pulp. Rev Bras Frutic 31:637–643. https://doi.org/10.1590/S0100-29452009000300003

    Article  Google Scholar 

  67. Zhang SB, Wang Z, Xu SY (2007) Optimization of the aqueous enzymatic extraction of rapeseed oil and protein hydrolysates. J Am Oil Chem Soc 84:97–105. https://doi.org/10.1007/s11746-006-1004-6

    Article  CAS  Google Scholar 

  68. Rui H, Zhang L, Li Z, Pan Y (2009) Extraction and characteristics of seed kernel oil from white pitaya. J Food Eng 93:482–486. https://doi.org/10.1016/j.jfoodeng.2009.02.016

    Article  CAS  Google Scholar 

  69. Domínguez H, Núñez MJ, Lema JM (1993) Oil extractability from enzymatically treated soybean and sunflower: range of operational variables. Food Chem 46:277–284. https://doi.org/10.1016/0308-8146(93)90119-Z

    Article  Google Scholar 

  70. Smith DD, Agrawal YC, Sarkar BC, Singh BPN (1993) Enzymatic hydrolysis pretreatment for mechanical expelling of soybeans. J Am Oil Chem Soc 70:885–890. https://doi.org/10.1007/BF02545348

    Article  CAS  Google Scholar 

  71. Nyam KL, Tan CP, Lai OM, Long K, Man YBC (2009) Enzyme-assisted aqueous extraction of Kalahari melon seed oil: optimization using response surface methodology. J Am Oil Chem Soc 86:1235–1240. https://doi.org/10.1007/s11746-009-1462-8

    Article  CAS  Google Scholar 

  72. Sineiro J, Dominguez H, Nuñez MJ, Lema JM (1998) Optimization of the enzymatic treatment during aqueous oil extraction from sunflower seeds. Food Chem 61:467–474. https://doi.org/10.1016/S0308-8146(97)00080-0

    Article  CAS  Google Scholar 

  73. Jiang L, Hua D, Wang Z, Xu S (2010) Aqueous enzymatic extraction of peanut oil and protein hydrolysates. Food Bioprod Process 88:233–238. https://doi.org/10.1016/j.fbp.2009.08.002

    Article  CAS  Google Scholar 

  74. Shah S, Sharma A, Gupta MN (2005) Extraction of oil from Jatropha curcas L. seed kernels by combination of ultrasonication and aqueous enzymatic oil extraction. Bioresour Technol 96:121–123. https://doi.org/10.1016/j.biortech.2004.02.026

    Article  CAS  Google Scholar 

  75. Winkler E, Foidl N, Gübitz GM, Staubmann R, Steiner W (1997) Enzyme-supported oil extraction from Jatropha curcas seeds. Appl Biochem Biotechnol 63–65:449–456. https://doi.org/10.1007/BF02920445

    Article  Google Scholar 

  76. Collao CA, Curotto E, Zuñiga EM (2007) Tratamiento enzimático en la extracción de aceite y obtención de antioxidantes a partir de semilla de onagra, Oenothera biennis, por prensado en frío. Grasas Aceites 58:10–14

  77. Santos RD, Ferrari RA (2005) Extração aquosa enzimática de óleo de soja 1. 25:132–138

  78. Latif S, Diosady LL, Anwar F (2008) Enzyme-assisted aqueous extraction of oil and protein from canola (Brassica napus L.) seeds. Eur J Lipid Sci Technol 110:887–892. https://doi.org/10.1002/ejlt.200700319

    Article  CAS  Google Scholar 

  79. Alberton LR, Vandenberghe LP de S, Assmann R, et al (2009) Xylanase production by Streptomyces viridosporus T7A in submerged and solid-state fermentation using agro-industrial residues. Braz Arch Biol Technol 52:171–180. https://doi.org/10.1590/S1516-89132009000700022

  80. Maciel GM, Vandenberghe LPDS, Haminiuk CWI et al (2008) Xylanase production by Aspergillus niger LPB 326 in solid-state fermentation using statistical experimental designs. Food Technol Biotechnol 46:183–189

    CAS  Google Scholar 

  81. Zimbardi ALRL, Sehn C, Meleiro LP, Souza F, Masui D, Nozawa M, Guimarães L, Jorge J, Furriel R (2013) Optimization of β-glucosidase, β-xylosidase and xylanase production by Colletotrichum graminicola under solid-state fermentation and application in raw sugarcane trash saccharification. Int J Mol Sci 14:2875–2902. https://doi.org/10.3390/ijms14022875

    Article  CAS  Google Scholar 

  82. Bajaj BK, Manhas K (2012) Production and characterization of xylanase from Bacillus licheniformis P11(C) with potential for fruit juice and bakery industry. Biocatal Agric Biotechnol 1:330–337. https://doi.org/10.1016/j.bcab.2012.07.003

    Article  CAS  Google Scholar 

  83. Kar S, Sona Gauri S, Das A, Jana A, Maity C, Mandal A, Das Mohapatra PK, Pati BR, Mondal KC (2013) Process optimization of xylanase production using cheap solid substrate by Trichoderma reesei SAF3 and study on the alteration of behavioral properties of enzyme obtained from SSF and SmF. Bioprocess Biosyst Eng 36:57–68. https://doi.org/10.1007/s00449-012-0761-x

    Article  CAS  Google Scholar 

  84. Ncube T, Howard RL, Abotsi EK, van Rensburg ELJ, Ncube I (2012) Jatropha curcas seed cake as substrate for production of xylanase and cellulase by Aspergillus niger FGSCA733 in solid-state fermentation. Ind Crop Prod 37:118–123. https://doi.org/10.1016/j.indcrop.2011.11.024

    Article  CAS  Google Scholar 

  85. Gupta V, Garg S, Capalash N, Gupta N, Sharma P (2015) Production of thermo-alkali-stable laccase and xylanase by co-culturing of Bacillus sp. and B. halodurans for biobleaching of kraft pulp and deinking of waste paper. Bioprocess Biosyst Eng 38:947–956. https://doi.org/10.1007/s00449-014-1340-0

    Article  CAS  Google Scholar 

  86. Izidoro SC, Knob A (2014) Production of xylanases by an Aspergillus niger strain in wastes grain. Acta Sci Biol Sci 36:313. https://doi.org/10.4025/actascibiolsci.v36i3.20567

    Article  CAS  Google Scholar 

  87. Murthy PS, Naidu MM (2012) Production and application of xylanase from Penicillium sp. utilizing coffee by-products. Food Bioprocess Technol 5:657–664. https://doi.org/10.1007/s11947-010-0331-7

    Article  CAS  Google Scholar 

  88. Thomas L, Sindhu R, Binod P, Pandey A (2014) Production of an alkaline xylanase from recombinant Kluyveromyces lactis (KY1) by submerged fermentation and its application in bio-bleaching. Biochem Eng J:1–7. https://doi.org/10.1016/j.bej.2015.02.008

  89. Knob A, Beitel SM, Fortkamp D et al (2013) Production, purification, and characterization of a major Penicillium glabrum xylanase using brewer’s spent grain as substrate. Biomed Res Int 2013. https://doi.org/10.1155/2013/728735

  90. Membrillo Venegas I, Fuentes-Hernández J, García-Rivero M, Martínez-Trujillo A (2013) Characteristics of Aspergillus niger xylanases produced on rice husk and wheat bran in submerged culture and solid-state fermentation for an applicability proposal. Int J Food Sci Technol 48:1798–1807. https://doi.org/10.1111/ijfs.12153

    Article  CAS  Google Scholar 

  91. Zheng J, Zhao W, Guo N, Lin F, Tian J, Wu L, Zhou H (2012) Development of an industrial medium and a novel fed-batch strategy for high-level expression of recombinant β-mananase by Pichia pastoris. Bioresour Technol 118:257–264. https://doi.org/10.1016/j.biortech.2012.05.065

    Article  CAS  Google Scholar 

  92. Ibrahim D, Puspitaloka H, Rahim RA, Hong LS (2012) Characterization of solid state fermentation culture conditions for growth and mannanase production by Aspergillus niger USM F4 on rice husk in tray system. Br Biotechnol J 2:133–145

    Article  CAS  Google Scholar 

  93. Chantorn ST, Buengsrisawat K, Pokaseam A et al (2009) Optimization of mannanase production from Penicillium oxalicum KUB-SN2-1 and application for hydrolysis property. Sudathip 4:1130–1138

    Google Scholar 

  94. Vijayalaxmi S, Prakash P, Jayalakshmi SK, Mulimani VH, Sreeramulu K (2013) Production of extremely alkaliphilic, halotolerent, detergent, and thermostable mannanase by the free and immobilized cells of Bacillus halodurans PPKS-2. Purification and characterization. Appl Biochem Biotechnol 171:382–395. https://doi.org/10.1007/s12010-013-0333-9

    Article  CAS  Google Scholar 

  95. Katrolia P, Zhou P, Zhang P, Yan Q, Li Y, Jiang Z, Xu H (2012) High level expression of a novel β-mannanase from Chaetomium sp. exhibiting efficient mannan hydrolysis. Carbohydr Polym 87:480–490. https://doi.org/10.1016/j.carbpol.2011.08.008

    Article  CAS  Google Scholar 

  96. Kim DY, Ham SJ, Lee HJ, Kim YJ, Shin DH, Rhee YH, Son KH, Park HY (2011) A highly active endo-β-1,4-mannanase produced by Cellulosimicrobium sp. strain HY-13, a hemicellulolytic bacterium in the gut of Eisenia fetida. Enzym Microb Technol 48:365–370. https://doi.org/10.1016/j.enzmictec.2010.12.013

    Article  CAS  Google Scholar 

  97. Patil SR, Dayanand A (2006) Production of pectinase from deseeded sunflower head by Aspergillus niger in submerged and solid-state conditions. Bioresour Technol 97:2054–2058. https://doi.org/10.1016/j.biortech.2005.09.015

    Article  CAS  Google Scholar 

  98. Heerd D, Yegin S, Tari C, Fernandez-Lahore M (2012) Pectinase enzyme-complex production by Aspergillus spp. in solid-state fermentation: a comparative study. Food Bioprod Process 90:102–110. https://doi.org/10.1016/j.fbp.2011.08.003

    Article  CAS  Google Scholar 

  99. Sethi B, Satpathy A, Tripathy S, Parida S, Singdevsachan SK, Behera B (2016) Production of ethanol and clarification of apple juice by pectinase enzyme produced from Aspergillus terreus NCFT 4269.10. Int J Biol Res 4:67–73. https://doi.org/10.14419/ijbr.v4i1.6134

    Article  Google Scholar 

  100. Ahmed SA, Mostafa FA (2013) Utilization of orange bagasse and molokhia stalk for production of pectinase enzyme. Braz J Chem Eng 30:449–456. https://doi.org/10.1590/S0104-66322013000300003

    Article  CAS  Google Scholar 

  101. Liu Y, Gong G, Zhang J, Jia S, Li F, Wang Y, Wu S (2014) Response surface optimization of ultrasound-assisted enzymatic extraction polysaccharides from Lycium barbarum. Carbohydr Polym 110:278–284. https://doi.org/10.1016/j.carbpol.2014.03.040

    Article  CAS  Google Scholar 

  102. Robl D, Delabona PDS, Mergel CM et al (2013) The capability of endophytic fungi for production of hemicellulases and related enzymes. BMC Biotechnol 13:94. https://doi.org/10.1186/1472-6750-13-94

    Article  CAS  Google Scholar 

  103. Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228. https://doi.org/10.1016/S1369-5274(03)00056-0

    Article  CAS  Google Scholar 

  104. Gusakov AV, Salanovich TN, Antonov AI, Ustinov BB, Okunev ON, Burlingame R, Emalfarb M, Baez M, Sinitsyn AP (2007) Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnol Bioeng 97:1028–1038. https://doi.org/10.1002/bit

    Article  CAS  Google Scholar 

  105. Kalia VC, Rashmi LS, Gupta MN (2001) Using enzymes for oil recovery from edible seeds. J Sci Ind Res 60:298–310

    CAS  Google Scholar 

  106. Latif S, Anwar F (2011) Aqueous enzymatic sesame oil and protein extraction. Food Chem 125:679–684. https://doi.org/10.1016/j.foodchem.2010.09.064

    Article  CAS  Google Scholar 

  107. Teixeira CB, Macedo GA, Macedo JA, da Silva LHM, Rodrigues AMC (2013) Simultaneous extraction of oil and antioxidant compounds from oil palm fruit (Elaeis guineensis) by an aqueous enzymatic process. Bioresour Technol 129:575–581. https://doi.org/10.1016/j.biortech.2012.11.057

    Article  CAS  Google Scholar 

  108. Tabtabaei S, Diosady LL (2013) Aqueous and enzymatic extraction processes for the production of food-grade proteins and industrial oil from dehulled yellow mustard flour. Food Res Int 52:547–556. https://doi.org/10.1016/j.foodres.2013.03.005

    Article  CAS  Google Scholar 

  109. Cheng MH, Rosentrater KA (2017) Economic feasibility analysis of soybean oil production by hexane extraction. Ind Crop Prod 108:775–785. https://doi.org/10.1016/j.indcrop.2017.07.036

    Article  CAS  Google Scholar 

  110. Cheng MH, Rosentrater KA, Sekhon J, Wang T, Jung S, Johnson LA (2019) Economic feasibility of soybean oil production by enzyme-assisted aqueous extraction processing. Food Bioprocess Technol 12:539–550. https://doi.org/10.1007/s11947-018-2228-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Porto de Souza Vandenberghe.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valladares-Diestra, K., de Souza Vandenberghe, L.P. & Soccol, C.R. Oilseed Enzymatic Pretreatment for Efficient Oil Recovery in Biodiesel Production Industry: a Review. Bioenerg. Res. 13, 1016–1030 (2020). https://doi.org/10.1007/s12155-020-10132-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10132-9

Keywords

Navigation