López-López A, Davila-Vazquez G, León-Becerril E, Villegas-García E, Gallardo-Valdez J (2010) Tequila vinasses: generation and full scale treatment processes. Rev Environ Sci Biotechnol 9:109–116. https://doi.org/10.1007/s11157-010-9204-9
CAS
Google Scholar
Consejo regulador del Tequila (CRT). Available at: https://www.crt.org.mx/estadisticascrtweb/; 2018. Accessed 6 Jan 2020
Buitron G, Carvajal C (2010) Biohydrogen production from tequila vinasses in an anaerobic sequencing batch reactor: effect of initial substrate concentration, temperature and hydraulic retention time. Bioresour Technol 01:9071–9077. https://doi.org/10.1016/j.biortech.2010.06.127
CAS
Google Scholar
van Lier JB, Mahmoud N, Zeeman G (2008) Anaerobic wastewater treatment, in biological wastewater treatment: principles modelling and design. IWA Publishing, London, pp 401–442. https://doi.org/10.1021/es00154a002
Google Scholar
Lindner J, Zielonka S, Oechsner H, Lemmer A (2016) Is the continuous two-stage anaerobic digestion process well suited for all substrates? Bioresour Technol 200:470–476. https://doi.org/10.1016/j.biortech.2015.10.052
CAS
PubMed
Google Scholar
Ruggeri B, Tommasi T, Sanfilippo S (2015) Two-step anaerobic digestion process, in BioH2 & BioCH4 through anaerobic digestion. Springer-Verlag:161–191. https://doi.org/10.1007/978-1-4471-6431-9
Google Scholar
Pohland FG, Ghosh S (1971) Developments in anaerobic stabilization of organic wastes: the two-phase concept. Environ Lett 1:255–266. https://doi.org/10.1080/00139307109434990
CAS
PubMed
Google Scholar
Kleerebezem R, Joosse B, Rozendal R, Van Loosdrecht MCM (2015) Anaerobic digestion without biogas? Rev Environ Sci Biotechnol 14:787–801. https://doi.org/10.1007/s11157-015-9374-6
CAS
Google Scholar
Venkata Mohan S, Nikhil GN, Chiranjeevi P, Nagendranatha Reddy C, Rohit MV, Naresh Kumar A, Sarkar O (2016) Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Bioresour Technol 215:2–12. https://doi.org/10.1016/j.biortech.2016.03.130
CAS
PubMed
Google Scholar
Sträuber H, Lucas R, Kleinsteuber S (2016) Metabolic and microbial community dynamics during the anaerobic digestion of maize silage in a two-phase process. Appl Microbiol Biotechnol 100:479–491. https://doi.org/10.1007/s00253-015-6996-0
CAS
PubMed
Google Scholar
Feng K, Deng Z, Wang Q, Zhang Y, Zheng C (2020) Effect of pre-fermentation types on the potential of methane production and energy recovery from food waste. Renew Energy 146:1588–1595. https://doi.org/10.1016/j.renene.2019.07.127
CAS
Google Scholar
Chen X, Yuan H, Zou D, Liu Y, Zhu B, Chufo A, Jaffar M, Li X (2015) Improving biomethane yield by controlling fermentation type ofacidogenic phase in two-phase anaerobic co-digestion of food wasteand rice straw. Chem Eng J 273:254–260. https://doi.org/10.1016/j.cej.2015.03.067
CAS
Google Scholar
Zhou M, Yan B, Wong JWC, Zhang Y (2018) Enhanced volatile fatty acids production from anaerobic fermentation offood waste: a mini-review focusing on acidogenic metabolic pathways. Bioresour Technol 248:68–78. https://doi.org/10.1016/j.biortech.2017.06.121
CAS
PubMed
Google Scholar
Pipyn P, Verstraete W (1981) Lactate and ethanol as intermediates in two-phase anaerobic digestion. Biotechnol Bioeng 23:1145–1154. https://doi.org/10.1002/bit.260230521
CAS
Google Scholar
Detman A, Mielecki D, Pleśniak Ł, Bucha M, Janiga M, Matyasik I, Chojnacka A, Jędrysek MO, Błaszczyk MK, Sikora A (2018) Methane-yielding microbial communities processing lactate-rich substrates: a piece of the anaerobic digestion puzzle. Biotechnol Biofuels 11:116. https://doi.org/10.1186/s13068-018-1106-z
CAS
PubMed
PubMed Central
Google Scholar
Wu Y, Wang C, Liu X, Ma H, Wu J, Zuo J, Wang K (2016) A new method of two-phase anaerobic digestion for fruit and vegetable waste treatment. Bioresour Technol 211:16–23. https://doi.org/10.1016/j.biortech.2016.03.050
CAS
PubMed
Google Scholar
Satpathy P, Steinigeweg S, Siefert E, Cypionka H (2017) Effect of lactate and starter inoculum on biogas production from fresh maize and maize silage. Adv Microbiol 7:358–376. https://doi.org/10.4236/aim.2017.75030
CAS
Google Scholar
Garcia-Aguirre J, Aymerich E, González-Mtnez de Goñi J, Esteban-Gutierrez M (2017) Selective VFA production potential from organic waste streams: assessing temperature and pH influence. Bioresour Technol 244:1081–1088. https://doi.org/10.1016/j.biortech.2017.07.187
CAS
PubMed
Google Scholar
García-Depraect O, Gómez-Romero J, León-Becerril E, López-López A (2017) A novel biohydrogen production process: co-digestion of vinasse and Nejayote as complex raw substrates using a robust inoculum. Int J Hydrog Energy 42:5820–5831. https://doi.org/10.1016/j.ijhydene.2016.11.204
CAS
Google Scholar
García-Depraect O, Valdez-Vázquez I, Rene ER, Gómez-Romero J, López-López A, León-Becerril E (2019) Lactate and acetate based biohydrogen production through dark co- fermentation of tequila vinasse and nixtamalization wastewater: metabolic and microbial community dynamics. Bioresour Technol 282:236–244. https://doi.org/10.1016/j.biortech.2019.02.100
CAS
PubMed
Google Scholar
García-Depraect O, Rene ER, Diaz-Cruces VF, León-Becerril E (2019) Effect of process parameters on enhanced biohydrogen production from tequila vinasse via the lactate-acetate pathway. Bioresour Technol 273:618–626. https://doi.org/10.1016/j.biortech.2018.11.056
CAS
PubMed
Google Scholar
García-Depraect O, León-Becerril E (2018) Fermentative biohydrogen production from tequila vinasse via the lactate-acetate pathway: operational performance, kinetic analysis and microbial ecology. Fuel 234:151–160. https://doi.org/10.1016/j.fuel.2018.06.126
CAS
Google Scholar
García-Depraect O, Rene ER, Gómez-Romero J, López-lópez A, León-Becerril E (2019) Enhanced biohydrogen production from the dark co-fermentation of tequila vinasse and nixtamalization wastewater: novel insights into ecological regulation by pH. Fuel 253:159–166. https://doi.org/10.1016/j.fuel.2019.04.147
CAS
Google Scholar
Fuess LT, Ferraz ADN, Machado CB, Zaiat M (2018) Temporal dynamics and metabolic correlation between lactate-producing and hydrogen-producing bacteria in sugarcane vinasse dark fermentation: the key role of lactate. Bioresour Technol 247:426–433. https://doi.org/10.1016/j.biortech.2017.09.121
CAS
PubMed
Google Scholar
Fuess LT, Zaiat M, Augusto Oller do Nascimento C (2019) Novel insights on the versatility of biohydrogen production from sugarcane vinasse via thermophilic dark fermentation: impacts of pH-driven operating strategies on acidogenesis metabolite profiles. Bioresour Technol 286:121379. https://doi.org/10.1016/j.biortech.2019.121379
CAS
PubMed
Google Scholar
Asunis F, De Gioannis G, Isipato M, Muntoni A, Polettini A, Pomi R, Rossi A, Spiga D (2019) Control of fermentation duration and pH to orient biochemicals and biofuels production from cheese whey. Bioresour Technol 289:121722. https://doi.org/10.1016/j.biortech.2019.121722
CAS
PubMed
Google Scholar
Blanco VMC, Oliveira GHD, Zaiat M (2019) Dark fermentative biohydrogen production from synthetic cheese whey in an anaerobic structured-bed reactor: performance evaluation and kinetic modeling. Renew Energy 139:1310–1319. https://doi.org/10.1016/j.renene.2019.03.029
CAS
Google Scholar
Holliger C, Alves M, Andrade D, Angelidaki I, Astals S, Baier U, Bougrier C, Buffière P, Carballa M, de Wilde V, Ebertseder F, Fernández B, Ficara E, Fotidis I, Frigon JC, de Laclos HF, Ghasimi DS, Hack G, Hartel M, Heerenklage J, Horvath IS, Jenicek P, Koch K, Krautwald J, Lizasoain J, Liu J, Mosberger L, Nistor M, Oechsner H, Oliveira JV, Paterson M, Pauss A, Pommier S, Porqueddu I, Raposo F, Ribeiro T, Rüsch Pfund F, Strömberg S, Torrijos M, van Eekert M, van Lier J, Wedwitschka H, Wierinck I (2016) Towards a standardization of biomethane potential tests. Water Sci Technol 74:2515–2522. https://doi.org/10.2166/wst.2016.336
CAS
PubMed
Google Scholar
Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos JL, Guwy AJ, Kalyuzhnyi S, Jenicek P, van Lier J (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 59:927–934. https://doi.org/10.2166/wst.2009.040
CAS
PubMed
Google Scholar
APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association/American Water Works Association/Water Environmental Federation, Washington DC
Google Scholar
RTLGenomics, Data analysis methodology. http://www.rtlgenomics.com/docs/Data_Analysis_Methodology.pdf. Accessed 15 Oct 2018
Strömberg S, Nistor M, Liu J (2014) Towards eliminating systematic errors caused by the experimental conditions in biochemical methane potential (BMP) tests. Waste Manag 34:1939–1948. https://doi.org/10.1016/j.wasman.2014.07.018
PubMed
Google Scholar
Moset V, Al-zohairi N, Møller HB (2015) The impact of inoculum source, inoculum to substrate ratio and sample preservation on methane potential from different substrates. Biomass Bioenergy 83:474–482. https://doi.org/10.1016/j.biombioe.2015.10.018
CAS
Google Scholar
Schievano A, Tenca A, Lonati S, Manzini E, Adani F (2014) Can two-stage instead of one-stage anaerobic digestion really increase energy recovery from biomass? Appl Energy 124:335–342. https://doi.org/10.1016/j.apenergy.2014.03.024
CAS
Google Scholar
Tao Y, Hu X, Zhu X, Jin H, Xu Z, Tang Q, Li X (2016) Production of butyrate from lactate by a newly isolated Clostridium sp. BPY5. Appl Biochem Biotechnol 179:361–374. https://doi.org/10.1007/s12010-016-1999-6
CAS
PubMed
Google Scholar
Cabrol L, Marone A, Tapia-Venegas E, Steyer JP, Ruiz-Filippi G, Trably E (2017) Microbial ecology of fermentative hydrogen producing bioprocesses: useful insights for driving the ecosystem function. FEMS Microbiol Rev 41:158–181. https://doi.org/10.1093/femsre/fuw043
CAS
PubMed
Google Scholar
Schwalm ND III, Mojadedi W, Gerlach ES, Benyamin M, Perisin MA, Akingbade KL (2019) Developing a microbial consortium for enhanced metabolite production from simulated food waste. Fermentation 5(4):98. https://doi.org/10.3390/fermentation5040098
Google Scholar
Hung C, Cheng C, Guan D, Wang S (2010) Interactions between Clostridium sp. and other facultative anaerobes in a self-formed granular sludge hydrogen-producing bioreactor. Bioresour Technol 6:2–9. https://doi.org/10.1016/j.ijhydene.2010.06.010
CAS
Google Scholar
Hung CH, Cheng CH, Guan DW, Wang ST, Hsu SC, Liang CM (2011) Interactions between Clostridium sp. and other facultative anaerobes in a self-formed granular sludge hydrogen-producing bioreactor. Int J Hydrog Energy 36:8704–8711. https://doi.org/10.1016/j.ijhydene.2010.06.010
CAS
Google Scholar
Shah FA, Mahmood Q, Shah MM, Pervez A, Asad SA (2014) Microbial ecology of anaerobic digesters: the key players of anaerobiosis. Sci World J 21. https://doi.org/10.1155/2014/183752
Google Scholar
Pol LWH, Lopes SIDC, Lettinga G, Lens PNL (2004) Anaerobic sludge granulation. Water Res 38:1376–1389. https://doi.org/10.1016/j.watres.2003.12.002
CAS
Google Scholar
Toledo-Cervantes A, Guevara-Santos N, Arreola-Vargas J, Snell-Castro R, Méndez-Acosta HO (2018) Performance and microbial dynamics in packed-bed reactors during the long-term two-stage anaerobic treatment of tequila vinasses. Biochem Eng J 138:12–20. https://doi.org/10.1016/j.bej.2018.06.020
CAS
Google Scholar
Arreola-Vargas J, Snell-Castro R, Rojo-Liera NM, González-Álvarez V, Méndez-Acosta HO (2018) Effect of the organic loading rate on the performance and microbial populations during the anaerobic treatment of tequila vinasses in a pilot-scale packed bed reactor. J Chem Technol Biotechnol 93:591–599. https://doi.org/10.1002/jctb.5413
CAS
Google Scholar