BioEnergy Research

, Volume 12, Issue 1, pp 168–183 | Cite as

Determination of the Bioenergy Potential of Brazilian Pine-Fruit Shell via Pyrolysis Kinetics, Thermodynamic Study, and Evolved Gas Analysis

  • José Luiz Francisco Alves
  • Jean Constantino Gomes Da SilvaEmail author
  • Valdemar Francisco da Silva Filho
  • Ricardo Francisco Alves
  • Wendell Venicio de Araujo Galdino
  • Silvia Layara Floriani Andersen
  • Rennio Felix De Sena


This work provides the first study about the evaluation of the bioenergy potential of lignocellulosic waste from Brazilian pine-fruit shell (Araucaria angustifolia). Physicochemical characterization, evolved gas from pyrolysis, and kinetic and thermodynamic studies were performed. A thermogravimetric analyzer was used for the pyrolysis experiments, where the runs were performed under an inert atmosphere of nitrogen at temperatures ranging from room temperature to 850 °C at different low heating rates (5, 10, 20, and 30 °C min−1). The physicochemical characterization of Brazilian pine-fruit shell showed good applicability for the gasification process due to the high fixed carbon content. Similarly, the pyrolysis experiments and FTIR-evolved gas analysis indicate its great potential for use as a solid biofuel. The kinetic study showed that the Kissinger–Akahira–Sunose method (ε = 0.07–0.11%) had a smaller relative error, when compared with the methods of Friedman (ε = 5.12–28.89%), Flynn–Wall–Ozawa (ε = 0.26–1.21%), and Starink (ε = 0.17%), and it was comparable to the Vyazovkin method (ε = 0.08–0.09%). Furthermore, the conversion rate curves obtained from kinetic parameters showed a satisfactory behavior, with a high regression coefficient (R2 ≥ 0.9165), thus demonstrating the great applicability of the parameters for the design and optimization of the thermochemical system. The endothermic and nonspontaneous process was observed, based on the positive ΔH, positive ΔG, and positive ΔS values of Brazilian pine-fruit shell. The pyrolysis of Brazilian pine-fruit shell has been identified as a viable alternative for bioenergy generation, acting as a solution for the final disposal of this agricultural waste biomass.


Bioenergy potential Brazilian pine-fruit shell Kinetic study Pyrolysis Thermodynamic analysis TGA-FTIR 



We are also thankful to LCA/UFPB and LACOM/UFPB for the permission to use their facilities.

Funding Information

The authors are grateful to the financial support given by the Brazilian Council for Scientific and Technological Development (CNPq/Brazil process 423869/2016-7) and Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES/Brazil finance code 001).

Supplementary material

12155_2019_9964_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 18 kb)


  1. 1.
    IEA (2018) World energy balances: overview. IEA Publications, Paris FranceGoogle Scholar
  2. 2.
    Mao G, Zou H, Chen G, du H, Zuo J (2015) Past, current and future of biomass energy research: a bibliometric analysis. Renew Sust Energ Rev 52:1823–1833. CrossRefGoogle Scholar
  3. 3.
    Arena U, Di Gregorio F, Santonastasi M (2010) A techno-economic comparison between two design configurations for a small scale, biomass-to-energy gasification based system. Chem Eng J 162:580–590. CrossRefGoogle Scholar
  4. 4.
    Huang YF, Te CP, Kuan WH, Lo SL (2015) Effects of lignocellulosic composition and microwave power level on the gaseous product of microwave pyrolysis. Energy 89:974–981. CrossRefGoogle Scholar
  5. 5.
    Brasil JL, Ev RR, Milcharek CD et al (2006) Statistical design of experiments as a tool for optimizing the batch conditions to Cr(VI) biosorption on Araucaria angustifolia wastes. J Hazard Mater 133:143–153. CrossRefGoogle Scholar
  6. 6.
    Lima EC, Royer B, Vaghetti JCP, Brasil JL, Simon NM, dos Santos AA Jr, Pavan FA, Dias SLP, Benvenutti EV, Silva EA (2007) Adsorption of Cu(II) on Araucaria angustifolia wastes: determination of the optimal conditions by statistic design of experiments. J Hazard Mater 140:211–220. CrossRefGoogle Scholar
  7. 7.
    IBGE (2016) Instituto Brasileiro de Geografia e Estatística. Sistema IBGE de Recuperação Automática. Tabela 289- Quantidade produzida e valor da produção na extração vegetal, por tipo de produto (PINHÃO). <> (Accessed 02 August 2018)
  8. 8.
    Royer B, Cardoso NF, Lima EC, Vaghetti JCP, Simon NM, Calvete T, Veses RC (2009) Applications of Brazilian pine-fruit shell in natural and carbonized forms as adsorbents to removal of methylene blue from aqueous solutions—kinetic and equilibrium study. J Hazard Mater 164:1213–1222. CrossRefGoogle Scholar
  9. 9.
    Royer B, Lima EC, Cardoso NF, Calvete T, Bruns RE (2010) Statistical design of experiments for optimization of batch adsorption conditions for removal of reactive red 194 textile dye from aqueous effluents. Chem Eng Commun 197:775–790. CrossRefGoogle Scholar
  10. 10.
    Cardoso NF, Pinto RB, Lima EC, Calvete T, Amavisca CV, Royer B, Cunha ML, Fernandes THM, Pinto IS (2011) Removal of remazol black B textile dye from aqueous solution by adsorption. Desalination 269:92–103. CrossRefGoogle Scholar
  11. 11.
    Calvete T, Lima EC, Cardoso NF, Dias SLP, Pavan FA (2009) Application of carbon adsorbents prepared from the Brazilian pine-fruit-shell for the removal of Procion Red MX 3B from aqueous solution—kinetic, equilibrium, and thermodynamic studies. Chem Eng J 155:627–636. CrossRefGoogle Scholar
  12. 12.
    Papadikis K, Gu S, Bridgwater AV, Gerhauser H (2009) Application of CFD to model fast pyrolysis of biomass. Fuel Process Technol 90:504–512. CrossRefGoogle Scholar
  13. 13.
    Ranganathan P, Gu S (2016) Computational fluid dynamics modelling of biomass fast pyrolysis in fluidised bed reactors, focusing different kinetic schemes. Bioresour Technol 213:333–341. CrossRefGoogle Scholar
  14. 14.
    Liu B, Papadikis K, Gu S, Fidalgo B, Longhurst P, Li Z, Kolios A (2017) CFD modelling of particle shrinkage in a fluidized bed for biomass fast pyrolysis with quadrature method of moment. Fuel Process Technol 164:51–68. CrossRefGoogle Scholar
  15. 15.
    Xue Q, Heindel TJ, Fox RO (2011) A CFD model for biomass fast pyrolysis in fluidized-bed reactors. Chem Eng Sci 66:2440–2452. CrossRefGoogle Scholar
  16. 16.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) Thermochimica Acta ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19. CrossRefGoogle Scholar
  17. 17.
    Gotor FJ, Criado JM, Malek J, Koga N (2000) Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A 104:10777–10782. CrossRefGoogle Scholar
  18. 18.
    Batistella L, Silva V, Suzin RC, Virmond E, Althoff CA, Moreira RFPM, José HJ (2015) Gaseous emissions from sewage sludge combustion in a moving bed combustor. Waste Manag 46:430–439. CrossRefGoogle Scholar
  19. 19.
    Pacioni TR, Soares D, Di Domenico M et al (2016) Bio-syngas production from agro-industrial biomass residues by steam gasification. Waste Manag 58:221–229. CrossRefGoogle Scholar
  20. 20.
    ASTM (2014) E1131-08: standard test method for compositional analysis by thermogravimetry. ASTM International, West Conshohocken, PA.
  21. 21.
    Alves JLF, da Silva JCG, da Silva Filho VF, Alves RF, de Araujo Galdino WV, de Sena RF (2019) Kinetics and thermodynamics parameters evaluation of pyrolysis of invasive aquatic macrophytes to determine their bioenergy potentials. Biomass Bioenergy 121:28–40. CrossRefGoogle Scholar
  22. 22.
    da Silva JCG, Alves JLF, Galdino WV de A et al (2018) Pyrolysis kinetic evaluation by single-step for waste wood from reforestation. Waste Manag 72:265–273. CrossRefGoogle Scholar
  23. 23.
    ASTM (2002) D5373-08: standard test methods for instrumental determination of carbon, hydrogen, and nitrogen in laboratory samples of coal. ASTM International, West Conshohocken, PA.
  24. 24.
    ASTM (2018) D4239-18e1: standard test method for sulfur in the analysis sample of coal and coke using high-temperature tube furnace combustion. ASTM International, West Conshohocken, PA.
  25. 25.
    Channiwala SA, Parikh PP (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81:1051–1063. CrossRefGoogle Scholar
  26. 26.
    Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sust Energ Rev 57:1126–1140. CrossRefGoogle Scholar
  27. 27.
    NIST (2018) National Institute of Standards and Technology—chemistry webbook. Accessed 9 Oct 2018
  28. 28.
    Vyazovkin S (2015) Isoconversional kinetics of thermally stimulated processes, 1st edn. Springer International Publishing, ChamGoogle Scholar
  29. 29.
    Starink M (2003) The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 404:163–176. CrossRefGoogle Scholar
  30. 30.
    Vo TK, Ly HV, Lee OK, Lee EY, Kim CH, Seo JW, Kim J, Kim SS (2017) Pyrolysis characteristics and kinetics of microalgal Aurantiochytrium sp. KRS101. Energy 118:369–376. CrossRefGoogle Scholar
  31. 31.
    Zhou L, Zou H, Wang Y, le Z, Liu Z, Adesina AA (2017) Effect of potassium on thermogravimetric behavior and co-pyrolytic kinetics of wood biomass and low density polyethylene. Renew Energy 102:134–141. CrossRefGoogle Scholar
  32. 32.
    Lin Y, Liao Y, Yu Z, Fang S, Lin Y, Fan Y, Peng X, Ma X (2016) Co-pyrolysis kinetics of sewage sludge and oil shale thermal decomposition using TGA–FTIR analysis. Energy Convers Manag 118:345–352. CrossRefGoogle Scholar
  33. 33.
    Vyazovkin S, Dollimore D (1996) Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. J Chem Inf Comput Sci 36:42–45. CrossRefGoogle Scholar
  34. 34.
    Pérez-Maqueda LA, Criado JM (2000) The accuracy of Senum and Yang’s approximations to the Arrhenius integral. J Therm Anal Calorim 60:909–915. CrossRefGoogle Scholar
  35. 35.
    Olszak-Humienik M, Mozejko J (2000) Thermodynamic functions of activated complexes created in thermal decomposition processes of sulphates. Thermochim Acta 344:73–79. CrossRefGoogle Scholar
  36. 36.
    Kim YS, Kim YS, Kim SH (2010) Investigation of thermodynamic parameters in the thermal decomposition of plastic waste-waste lube oil compounds. Environ Sci Technol 44:5313–5317. CrossRefGoogle Scholar
  37. 37.
    Pourmortazavi SM, Kohsari I, Teimouri MB, Hajimirsadeghi SS (2007) Thermal behaviour kinetic study of dihydroglyoxime and dichloroglyoxime. Mater Lett 61:4670–4673. CrossRefGoogle Scholar
  38. 38.
    Straszko J, Olszak-Humienik M, Możejko J (1997) Kinetics of thermal decomposition of ZnSO4·7H2O. Thermochim Acta 292:145–150. CrossRefGoogle Scholar
  39. 39.
    Boonchom B, Puttawong S (2010) Thermodynamics and kinetics of the dehydration reaction of FePO4.2H2O. Phys B Condens Matter 405:2350–2355. CrossRefGoogle Scholar
  40. 40.
    Turmanova SC, Genieva SD, Dimitrova AS, Vlaev LT (2008) Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites. Express Polym Lett 2:133–146. CrossRefGoogle Scholar
  41. 41.
    Vlaev LT, Markovska IG, Lyubchev LA (2003) Non-isothermal kinetics of pyrolysis of rice husk. Thermochim Acta 406:1–7. CrossRefGoogle Scholar
  42. 42.
    Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel 89:913–933. CrossRefGoogle Scholar
  43. 43.
    Bin YY, Ryu C, Khor A et al (2005) Effect of fuel properties on biomass combustion. Part II. Modelling approach—identification of the controlling factors. Fuel 84:2116–2130. CrossRefGoogle Scholar
  44. 44.
    Domenico MD, Collazzo GC, Pacioni TR, José HJ, Moreira RFPM (2018) Gasification of Brazilian coal-chars with CO2: effect of samples’ properties on reactivity and kinetic modeling. Chem Eng Commun 0:1–11. Google Scholar
  45. 45.
    Alves JLF, Da Silva JCG, de Sena RF, et al (2018) CO2 gasification of biochars prepared from agroindustrial waste: a kinetic study. In: 26th European biomass conference and exhibition proceedings. Copenhagen, pp 769–777Google Scholar
  46. 46.
    Parascanu MM, Sánchez P, Soreanu G, Valverde JL, Sanchez-Silva L (2018) Environmental assessment of olive pomace valorization through two different thermochemical processes for energy production. J Clean Prod 186:771–781. CrossRefGoogle Scholar
  47. 47.
    Yu Y, Yang Y, Cheng Z, Blanco PH, Liu R, Bridgwater AV, Cai J (2016) Pyrolysis of rice husk and corn stalk in auger reactor. 1. Characterization of char and gas at various temperatures. Energy Fuel 30:10568–10574. CrossRefGoogle Scholar
  48. 48.
    García R, Pizarro C, Lavín AG, Bueno JL (2012) Characterization of Spanish biomass wastes for energy use. Bioresour Technol 103:249–258. CrossRefGoogle Scholar
  49. 49.
    Haykiri-Acma H, Turan AZ, Yaman S, Kucukbayrak S (2010) Controlling the excess heat from oxy-combustion of coal by blending with biomass. Fuel Process Technol 91:1569–1575. CrossRefGoogle Scholar
  50. 50.
    García R, Pizarro C, Lavín AG, Bueno JL (2014) Spanish biofuels heating value estimation. Part I: ultimate analysis data. Fuel 117:1130–1138. CrossRefGoogle Scholar
  51. 51.
    Sanchez-Silva L, López-González D, Garcia-Minguillan AM, Valverde JL (2013) Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae. Bioresour Technol 130:321–331. CrossRefGoogle Scholar
  52. 52.
    Werner K, Pommer L, Broström M (2014) Thermal decomposition of hemicelluloses. J Anal Appl Pyrolysis 110:130–137. CrossRefGoogle Scholar
  53. 53.
    Collard F-X, Blin J (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sust Energ Rev 38:594–608. CrossRefGoogle Scholar
  54. 54.
    Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. CrossRefGoogle Scholar
  55. 55.
    Liu C, Hu J, Zhang H, Xiao R (2016) Thermal conversion of lignin to phenols: relevance between chemical structure and pyrolysis behaviors. Fuel 182:864–870. CrossRefGoogle Scholar
  56. 56.
    Sahoo S, Seydibeyoğlu MÖ, Mohanty AK, Misra M (2011) Characterization of industrial lignins for their utilization in future value added applications. Biomass Bioenergy 35:4230–4237. CrossRefGoogle Scholar
  57. 57.
    Silverstein RM, Webster FX, Kiemle DJ (2005) Spectrometric identification of organic compounds, 7th edn. Wiley, New YorkGoogle Scholar
  58. 58.
    Shen DK, Gu S, Bridgwater AV (2010) Study on the pyrolytic behaviour of xylan-based hemicellulose using TG–FTIR and Py–GC–FTIR. J Anal Appl Pyrolysis 87:199–206. CrossRefGoogle Scholar
  59. 59.
    Chen D, Liu D, Zhang H, Chen Y, Li Q (2015) Bamboo pyrolysis using TG–FTIR and a lab-scale reactor: analysis of pyrolysis behavior, product properties, and carbon and energy yields. Fuel 148:79–86. CrossRefGoogle Scholar
  60. 60.
    Zhao J, Xiuwen W, Hu J, Liu Q, Shen D, Xiao R (2014) Thermal degradation of softwood lignin and hardwood lignin by TG-FTIR and Py-GC/MS. Polym Degrad Stab 108:133–138. CrossRefGoogle Scholar
  61. 61.
    Zhou H, Long Y, Meng A, Chen S, Li Q, Zhang Y (2015) A novel method for kinetics analysis of pyrolysis of hemicellulose, cellulose, and lignin in TGA and macro-TGA. RSC Adv 5:26509–26516. CrossRefGoogle Scholar
  62. 62.
    Burnham AK, Zhou X, Broadbelt LJ (2015) Critical review of the global chemical kinetics of cellulose thermal decomposition. Energy Fuel 29:2906–2918. CrossRefGoogle Scholar
  63. 63.
    Yeo JY, Chin BLF, Tan JK, Loh YS (2017) Comparative studies on the pyrolysis of cellulose, hemicellulose, and lignin based on combined kinetics. J Energy Inst 92:27–37. CrossRefGoogle Scholar
  64. 64.
    Wang S, Ru B, Dai G, Shi Z, Zhou J, Luo Z, Ni M, Cen K (2017) Mechanism study on the pyrolysis of a synthetic β-O-4 dimer as lignin model compound. Proc Combust Inst 36:2225–2233. CrossRefGoogle Scholar
  65. 65.
    Alves JLF, Da Silva JCG, Costa RL et al (2018) Investigation of the bioenergy potential of microalgae Scenedesmus acuminatus by physicochemical characterization and kinetic analysis of pyrolysis. J Therm Anal Calorim.
  66. 66.
    Chen C, Miao W, Zhou C, Wu H (2017) Thermogravimetric pyrolysis kinetics of bamboo waste via asymmetric double sigmoidal (Asym2sig) function deconvolution. Bioresour Technol 225:48–57. CrossRefGoogle Scholar
  67. 67.
    Yuan X, He T, Cao H, Yuan Q (2017) Cattle manure pyrolysis process: kinetic and thermodynamic analysis with isoconversional methods. Renew Energy 107:489–496. CrossRefGoogle Scholar
  68. 68.
    Müsellim E, Tahir MH, Ahmad MS, Ceylan S (2018) Thermokinetic and TG/DSC-FTIR study of pea waste biomass pyrolysis. Appl Therm Eng 137:54–61. CrossRefGoogle Scholar
  69. 69.
    Ye G, Luo H, Ren Z, Ahmad MS, Liu CG, Tawab A, al-Ghafari AB, Omar U, Gull M, Mehmood MA (2018) Evaluating the bioenergy potential of Chinese liquor-industry waste through pyrolysis, thermogravimetric, kinetics and evolved gas analyses. Energy Convers Manag 163:13–21. CrossRefGoogle Scholar
  70. 70.
    Kaur R, Gera P, Jha MK, Bhaskar T (2018) Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Bioresour Technol 250:422–428. CrossRefGoogle Scholar
  71. 71.
    Huang L, Liu J, He Y, Sun S, Chen J, Sun J, Chang KL, Kuo J, Ning X’ (2016) Thermodynamics and kinetics parameters of co-combustion between sewage sludge and water hyacinth in CO2/O2 atmosphere as biomass to solid biofuel. Bioresour Technol 218:631–642. CrossRefGoogle Scholar
  72. 72.
    Ahmad MS, Mehmood MA, Liu C-G, Tawab A, Bai FW, Sakdaronnarong C, Xu J, Rahimuddin SA, Gull M (2018) Bioenergy potential of Wolffia arrhiza appraised through pyrolysis, kinetics, thermodynamics parameters and TG-FTIR-MS study of the evolved gases. Bioresour Technol 253:297–303. CrossRefGoogle Scholar
  73. 73.
    Mehmood MA, Ye G, Luo H, Liu C, Malik S, Afzal I, Xu J, Ahmad MS (2017) Pyrolysis and kinetic analyses of camel grass (Cymbopogon schoenanthus) for bioenergy. Bioresour Technol 228:18–24. CrossRefGoogle Scholar
  74. 74.
    Ahmad MS, Mehmood MA, Al Ayed OS et al (2017) Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential. Bioresour Technol 224:708–713. CrossRefGoogle Scholar
  75. 75.
    Fournel S, Marcos B, Godbout S, Heitz M (2015) Predicting gaseous emissions from small-scale combustion of agricultural biomass fuels. Bioresour Technol 179:165–172. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • José Luiz Francisco Alves
    • 1
  • Jean Constantino Gomes Da Silva
    • 1
    • 2
    Email author
  • Valdemar Francisco da Silva Filho
    • 1
  • Ricardo Francisco Alves
    • 3
  • Wendell Venicio de Araujo Galdino
    • 4
  • Silvia Layara Floriani Andersen
    • 2
  • Rennio Felix De Sena
    • 4
  1. 1.Department of Chemical Engineering and Food EngineeringFederal University of Santa CatarinaFlorianópolisBrazil
  2. 2.Department of Renewable Energy EngineeringFederal University of ParaíbaJoão PessoaBrazil
  3. 3.Department Materials Science and EngineeringFederal University of Campina GrandeCampina GrandeBrazil
  4. 4.Department of Chemical EngineeringFederal University of ParaíbaJoão PessoaBrazil

Personalised recommendations