Manihot glaziovii-Bonded and Bioethanol-Infused Charcoal Dust Briquettes: A New Route of Addressing Sustainability, Ignition, and Food Security Issues in Briquette Production


Most of the citizens in developing countries use charcoal for domestic cooking and small-scale enterprises because of its high calorific value, less smoke, and easy to transport. However, a lot of charcoal dust is generated from charcoal trading activities. The dust is left as heaps of solid wastes in urban areas and sometimes thrown in water streams, thus being a nuisance to both humans and the environment. This study aimed to develop and characterize charcoal dust briquettes bonded with wild cassava Manihot glaziovii and also use of bioethanol to enhance briquette ignition. The percentages of binder to charcoal dust were varied from 5 to 30%. Proximate analysis, density, ignition time, burning rate, burning time, and calorific value were determined. The density of the produced briquettes ranged from 0.67 ± 0 to 0.83 ± 0.1 g/cm3; percentage of moisture content varied from 3.4 ± 0.2 to 4.2 ± 0.2; ash content varied from 19.6 ± 0.6 to 21.5 ± 0; percentage volatile matter ranged from 19.8 ± 0.3 to 24.3 ± 0.4; and percentage fixed carbon ranged from 51.9 ± 1.1 to 55.3 ± 0.2. The calorific value ranged from 17.7 ± 0.7 to 19.7 ± 0.3 MJ/kg, ignition time 139 to 163 s, and burning rate 0.3 to 0.7 g/min while water boiling time varied from 14 to 19 min and burning time from 85 to 116 min. Ignition test revealed that bioethanol ratio of 15 mL to 56 g of the briquette showed the best briquette ignition characteristics. It was further found that the amount of binder used influenced the combustion properties of the briquettes. This study also showed that charcoal dust could be compacted to briquettes using Manihot glaziovii as a binder. The overall performance of the briquettes showed that 5% binder gave the best results in terms of combustion characteristics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Yaman S, Şahan M, Haykiri-Acma H, Şeşen K, Küçükbayrak S (2000) Production of fuel briquettes from olive refuse and paper mill waste. Fuel Process Technol 68(1):23–31.

    CAS  Article  Google Scholar 

  2. 2.

    Carnaje NP, Talagon RB, Peralta JP, Shah K, Paz-Ferreiro J (2018) Development and characterisation of charcoal briquettes from water hyacinth (Eichhornia crassipes)-molasses blend. PLoS One 13(11):e0207135.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Njenga M, Karanja N, Munster C, Iiyama M, Neufeldt H, Kithinji J, Jamnadass R (2013) Charcoal production and strategies to enhance its sustainability in Kenya. Dev Pract 23(3):359–371.

    Article  Google Scholar 

  4. 4.

    Dam J (2017) The charcoal transition: greening the charcoal value chain to mitigate climate change and improve local livelihoods. Food and Agriculture Organization of the United Nations, Rome Accessed date: 25 December 2018

    Google Scholar 

  5. 5.

    Lokina R, Mapunda G (2017) Willingness to switch from charcoal to alternative energy sources in Dar es Salaam, Tanzania. Tanzania Econ Rev 5(1-2) Accessed Date: 13 December 2018

  6. 6.

    Njenga M, Karanja N, Karlsson H, Jamnadass R, Iiyama M, Kithinji J, Sundberg C (2014) Additional cooking fuel supply and reduced global warming potential from recycling charcoal dust into charcoal briquette in Kenya. J Clean Prod 81:81–88. Accessed date: 13 December 2018

    CAS  Article  Google Scholar 

  7. 7.

    Ferguson H (2012) Briquette businesses in Uganda: the potential for briquettes enterprises to address the sustainability of the Ugandan biomass fuel market. G.V.E.P. International, London Accessed Date: 14 June 2017

  8. 8.

    Chaney JO (2010) Combustion characteristics of biomass briquettes, Doctoral Dissertation, University of Nottingham Accessed Date: 20 July 2017

  9. 9.

    Mary N (2013) Implications of charcoal briquette produced by local communities on livelihoods and environment in Nairobi Kenya. Int J Renew Energy Dev 2(1):19–29

    Article  Google Scholar 

  10. 10.

    Okia D, Ahmed M, Ndiema C (2017) Combustion and emission characteristics of water hyacinth based composite briquettes. Sci Res J 5(11) Accessed date: 12 May 2018

  11. 11.

    Ugwu K, Agbo K (2013) Evaluation of binders in the production of briquettes from empty fruit bunches of Elaeis guineensis. Int J Renew Sustain Energy 2(4):176–179

    Article  Google Scholar 

  12. 12.

    Bhattacharya S, Sett S, Shrestha RM (1989) State of the art for biomass densification. Energy Sources 11(3):161–182.

    Article  Google Scholar 

  13. 13.

    Mwampamba TH, Owen M, Pigaht M (2013) Opportunities, challenges and way forward for the charcoal briquette industry in sub-Saharan Africa. Energy Sustain Dev 17(2):158–170.

    Article  Google Scholar 

  14. 14.

    Sotannde O, Oluyege A, Abah G (2010) Physical and combustion properties of briquettes from sawdust of Azadirachta indica. J For Res 21(1):63–67.

    CAS  Article  Google Scholar 

  15. 15.

    Oladeji J (2013) Investigation into viability of briquettes from different agricultural residues as alternatives to wood and kerosene fuels. New York Sci J 6(8):78–83 Accessed date: 10 August 2018

    Google Scholar 

  16. 16.

    Borowski G, Stępniewski W, Wójcik-Oliveira K (2017) Effect of starch binder on charcoal briquette properties. Int Agrophys 31(4):571–574.

  17. 17.

    Oyelaran OA (2014) Effects of binding ratios on some densification characteristics of groundnut shell briquettes. Iran J Energy Environ 5(2).

  18. 18.

    Demirbas A, Ahmad W, Alamoudi R, Sheikh M (2016) Sustainable charcoal production from biomass. Energy source Part A: Rec, Util, Environ Eff 38(13):1882–1889.

    CAS  Article  Google Scholar 

  19. 19.

    Pradhan P, Mahajani SM, Arora A (2018) Production and utilization of fuel pellets from biomass: A review. Fuel Process Technol 181:215–232.

    CAS  Article  Google Scholar 

  20. 20.

    Muazu RI, Stegemann JA (2015) Effects of operating variables on durability of fuel briquettes from rice husks and corn cobs. Fuel Process Technol 133:137–145

    CAS  Article  Google Scholar 

  21. 21.

    Mambo W (2016) Optimal compaction pressure, particle size and binder ratio for quality briquettes made from maize cobs. Jomo Kenyatta University of Agriculture and Technology, MSc Dissertation

    Google Scholar 

  22. 22.

    Lubwama M, Yiga VA (2018) Characteristics of briquettes developed from rice and coffee husks for domestic cooking applications in Uganda. Renew Energy 118:43–55.

    CAS  Article  Google Scholar 

  23. 23.

    Olugbade T, Ojo O, Mohammed T (2019) Influence of binders on combustion properties of biomass briquettes: a recent review. Bioenergy Res 12:1–19.

    CAS  Article  Google Scholar 

  24. 24.

    Arewa ME, Daniel IC, Kuye A (2016) Characterisation and comparison of rice husk briquettes with cassava peels and cassava starch as binders. Biofuels 7(6):671–675.

    CAS  Article  Google Scholar 

  25. 25.

    Moshi AP, Crespo CF, Badshah M, Hosea KM, Mshandete AM, Elisante E, Mattiasson B (2014) Characterisation and evaluation of a novel feedstock, Manihot glaziovii, Muell. Arg, for production of bioenergy carriers: Bioethanol and biogas. Bioresour Technol 172:58–67.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Sebayang A, Hassan M, Ong H, Dharma S, Silitonga A, Kusumo F, Mahlia T, Bahar A (2017) Optimization of reducing sugar production from Manihot glaziovii starch using response surface methodology. Energies 10(1):35. Accessed date: 11 April 2019

    Article  Google Scholar 

  27. 27.

    Avedikian, SZ, Instant starting briquettes. 1984, Google Patents.

  28. 28.

    Hairong Y, Yunzhi P, Kuisheng W, Yanping L, Xiaoyu Z, Shuqing M, Xiujin L (2010) Ignition and emission characteristics of ignition-assisting agents for densified corn stover briquette fuel. Chin J Chem Eng 18(4):687–694.

    Article  Google Scholar 

  29. 29.

    Sotannde OA, Oluyege A, Abah G (2010) Physical and combustion properties of charcoal briquettes from neem wood residues. Int Agrophys 24(2):189–194 Accessed date: 29 August 2017

    CAS  Google Scholar 

  30. 30.

    Hu Q, Shao J, Yang H, Yao D, Wang X, Chen H (2015) Effects of binders on the properties of bio-char pellets. Appl Energy 157:508–516

    CAS  Article  Google Scholar 

  31. 31.

    Yank A, Ngadi M, Kok R (2016) Physical properties of rice husk and bran briquettes under low pressure densification for rural applications. Biomass Bioenergy 84:22–30

    CAS  Article  Google Scholar 

  32. 32.

    Onchieku JM, Chikamai BN, Rao MS (2012) Optimum parameters for the formulation of charcoal briquettes using bagasse and clay as binder. Eur J Sustain Dev:477–492

  33. 33.

    Olorunnisola A (2007) Production of fuel briquettes from waste paper and coconut husk admixtures. . International Commission of Agricultural Engineering E- Journal 9. = 1&isAllowed = y. Accessed date: 6 June 2017

  34. 34.

    Chirchir DK, Nyaanga DM, and Githeko JM (2013) Effect of binder types and amount on physical and combustion characteristics. Int J Eng Sci Technol 2. Accessed date: 4 December 2018

  35. 35.

    Davies RM, Davies OA, Mohammed US (2013) Combustion characteristics of traditional energy sources and water hyacinth briquettes. Int J Sci Res Environ Sci 1(7):144.

    Article  Google Scholar 

  36. 36.

    Grover P and Mishra S (1996) Biomass briquetting: technology and practices. Food and Agriculture Organization of the United Nations.

  37. 37.

    Onchieku J, Chikamai B, Rao M (2012) Optimum parameters for the formulation of charcoal briquettes using bagasse and clay as binder. Eur J Sustain Dev 1(3):477–492.

    Article  Google Scholar 

  38. 38.

    Abdulkareem S, Hakeem BA, Ahmed II, Ajiboye TK, Adebisi JA, Yahaya T (2018) Combustion characteristics of bio-degradable biomass briquettes. J Eng Sci Technol 13(9):2779–2791 Accessed date: 18 December 2018

    Google Scholar 

  39. 39.

    Mani S, Tabil LG, Sokhansanj S (2006) Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass Bioenergy 30:648–654.

    Article  Google Scholar 

  40. 40.

    Sen R, Wiwatpanyaporn S, Annachhatre AP (2016) Influence of binders on physical properties of fuel briquettes produced from cassava rhizome waste. Int J Environ Waste Manag 17(2):158–175.

    CAS  Article  Google Scholar 

  41. 41.

    Ikelle II and Joseph MN (2014) The study of briquettes produced with bitumen, CaSO4 and starch as binders. Am J Eng Res: 2320-0847.

  42. 42.

    Roy MM, Corscadden KW (2012) An experimental study of combustion and emissions of biomass briquettes in a domestic wood stove. Appl Energy 99:206–212.

    CAS  Article  Google Scholar 

  43. 43.

    Njenga M, Karanja N, Prain G, Malii J, Munyao P, Gathuru K, Mwasi B (2009) Community-based energy briquette production from urban organic waste at Kahawa Soweto informal settlement, Nairobi. International Potato Center Lima, Peru. Number of

    Google Scholar 

  44. 44.

    Veeresh S, Narayana J (2013) Sustainable utilization of agro-waste for high calorific energy briquettes. Energy source Part A: Rec, Util, Environ Eff 35(14):1375–1384.

    Article  Google Scholar 

  45. 45.

    Akowuah JO, Kemausuor F, Mitchual SJ (2012) Physico-chemical characteristics and market potential of sawdust charcoal briquette. Int J Energy Environ Eng 3(1):20–26.

    CAS  Article  Google Scholar 

  46. 46.

    Zanella K, Gonçalvesb JL, Tarantoa OP (2016) Charcoal briquette production using orange bagasse and corn starch. Chem Eng 49:313–318.

    Article  Google Scholar 

  47. 47.

    Onuegbu T, Ogbu I, Ilochi N, Okafor I, Obumselu O, Ekpunobi U (2010) Enhancing the efficiency of coal briquette in rural Nigeria using Pennisetum purpureum. Adv Nat Appl Sci 4(3):299–305 Accessed date: 9 January 2019

    Google Scholar 

  48. 48.

    Chin OC, Siddiqui KM (2000) Characteristics of some biomass briquettes prepared under modest die pressures. Biomass Bioenergy 18:223–228.

    Article  Google Scholar 

Download references


The authors thank the Water Infrastructure and Sustainable Energy Futures center (WISE-Futures) for supporting this study

Author information



Corresponding authors

Correspondence to Lynder E. Gesase or Cecil K. King’ondu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 84 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gesase, L.E., King’ondu, C.K. & Jande, Y.A.C. Manihot glaziovii-Bonded and Bioethanol-Infused Charcoal Dust Briquettes: A New Route of Addressing Sustainability, Ignition, and Food Security Issues in Briquette Production. Bioenerg. Res. 13, 378–386 (2020).

Download citation


  • Charcoal dust
  • Manihot glaziovii
  • Briquette
  • binder
  • Bioethanol
  • Ignition