Skip to main content

Field Performance of Saccharum × Miscanthus Intergeneric Hybrids (Miscanes) Under Cool Climatic Conditions of Northern Japan


Physiological susceptibility to early- and late-season chilling limits commercial production of sugarcane (Saccharum spp. hybrid), a major crop for lignocellulosic biomass, refined sugar, and bioethanol, to tropical and the warmest subtropical regions. Interspecific and intergeneric hybridization have been used to broaden the genetic base of sugarcane and improve its adaptation to temperate climates. Chilling tolerance can be introgressed in sugarcane through intergeneric hybridization with Miscanthus, a cold-tolerant C4 perennial grass, which is genetically homologous to sugarcane. This study evaluated intergeneric F1 hybrids of Saccharum × Miscanthus, miscanes, which included two genotypes of sugarcane × Miscanthus sinensis and sixteen genotypes of sugarcane × Miscanthus sacchariflorus, for their seasonal variation in photosynthesis and biomass production under field conditions in Hokkaido, Japan, to identify promising genotypes and traits, which can be selected to further improve sugarcane. Results showed several of the miscane genotypes had high early- and late-season photosynthesis coupled with high biomass production, which likely indicates chilling tolerance. High broad-sense heritabilities for traits, including stem diameter, tiller number, leaf width, leaf and stem dry weight, and high correlations between these traits and dry matter yield indicate selections can be made efficiently to improve sugarcane. Although none of the miscanes overwintered at the experimental location, we identified miscane “JM 14-09” as a superior genotype for introgression breeding programs and as a potential energycane cultivar for its high biomass-production capacity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Burner DM, Hale AL, Viator RP et al (2017) Ratoon cold tolerance of Pennisetum, Erianthus, and Saccharum bioenergy feedstocks. Ind Crop Prod 109:327–334.

    Article  Google Scholar 

  2. 2.


  3. 3.

    Waclawovsky AJ, Sato PM, Lembke CG, Moore PH, Souza GM (2010) Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotechnol J 8(3):263–276.

  4. 4.

    Glowacka K, Ahmed A, Sharma S et al (2016) Can chilling tolerance of C4 photosynthesis in Miscanthus be transferred to sugarcane? GCB Bioenergy 8(2):407–418.

  5. 5.

    Santiago AD, Rossetto R, de Mello IW, Urquiaga S (2010) Sugarcane. In: Halford NG, Karp A (eds) Energy crops. The Royal Society of Chemistry, Cambridge, pp 77–103

    Chapter  Google Scholar 

  6. 6.

    Ge X, Burner DM, Xu J, Phillips GC, Sivakumar G (2011) Bioethanol production from dedicated energy crops and residues in Arkansas, USA. Biotechnol J 6(1):66–73.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    RFA (2017) World fuel ethanol production annual U. S. Fuel Ethanol Production Weekly & Monthly Ethanol Production. December 14, 2018. Accessed 14 Dec 2018

  8. 8.

    AMIS (2017) Market Monitor No 47. December 14, 2018. Accessed 14 Dec 2018

  9. 9.

    MAPA (2018) Sugarcane industry, Sugar and Ethanol Production in Brazil. 13–14. December 13, 2018. Accessed 13 Dec 2018

  10. 10.

    Du YC, Nose A, Wasano K (1999) Thermal characteristics of C4 photosynthetic enzymes from leaves of three sugarcane species differing in cold sensitivity. Plant Cell Physiol 40(3):298–304.

    CAS  Article  Google Scholar 

  11. 11.

    Du YC, Nose A, Wasano K (1999) Effects of chilling temperature on photosynthetic rates, photosynthetic enzyme activities and metabolite levels in leaves of three sugarcane species. Plant Cell Environ 22(3):317–324.

    CAS  Article  Google Scholar 

  12. 12.

    Sage RF, Peixoto MM, Sage TL (2013) Photosynthesis in sugarcane. In: Moore PH, Botha FC (eds) Sugarcane: physiology, biochemistry, and functional biology, 1st edn. Wiley, pp 121–154.

  13. 13.

    Głowacka K, Jørgensen U, Kjeldsen JB, Kørup K, Spitz I, Sacks EJ, Long SP (2015) Can the exceptional chilling tolerance of C4 photosynthesis found in Miscanthus × giganteus be exceeded? Screening of a novel Miscanthus Japanese germplasm collection. Ann Bot 115(6):981–990.

  14. 14.

    Grantz DA (1989) Effect of cool temperatures on photosynthesis and stomatal conductance in field-grown sugarcane in Hawaii. Field Crops Res 22(2):143–155.

  15. 15.

    Allison JCS, Pammenter NW, Haslam RJ (2007) Why does sugarcane (Saccharum sp. hybrid) grow slowly? South African J Bot 73(4):546–551.

  16. 16.

    Nose A, Uehara M, Kawamitsu Y et al (1994) Variations in leaf gas exchange traits of Saccharum including feral sugarcane, Saccharum spontaneum L. Japanese J Crop Sci 63(3):489–495.

  17. 17.

    Fageria NK, Moreira A, Moraes LAC et al (2013) Sugarcane and Energycane. In: Singh BP (ed) Biofuel crops: production, physiology and genetics, 1st edn. CAB international Wallingford, UK, Boston, pp 151–171.

    Chapter  Google Scholar 

  18. 18.

    Sloan RE, Farquhar RH (1978) The effects of frosting on varieties of sugar cane with commercial potential in New South Wales. In: Proceedings-Queensland Society of Sugar Cane Technologists (Australia)

  19. 19.

    Moore PH (1987) Anatomy and morphology. In: Heinz DJ (ed) Sugarcane improvement through breeding, 1st edn. Elsevier Science Publishers B.V. (Biomedical Division), Amsterdam, pp 85–142

    Chapter  Google Scholar 

  20. 20.

    Beale CV, Long SP (1995) Can perennial C4 grasses attain high efficiencies of radiant energy conversion in cool climates? Plant Cell Environ 18(6):641–650.

  21. 21.

    Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19(4):209–227.

  22. 22.

    Clifton-Brown JC, Lewandowski I, Andersson B et al (2001) Performance of 15 Miscanthus genotypes at five sites in Europe. Agron J 93(5):1013–1019.

  23. 23.

    Friesen PC, Peixoto MM, Busch FA, Johnson DC, Sage RF (2014) Chilling and frost tolerance in Miscanthus and Saccharum genotypes bred for cool temperate climates. J Exp Bot 65(13):3749–3758.

  24. 24.

    Jackson P (2013) Energy cane. In: Saha MC, Bhandari HS, Bouton JH (eds) Bioenergy feedstocks: breeding and genetics, 1st edn. Wiley-Blackwell, pp 117–149.

  25. 25.

    Khan NA, Bedre R, Parco A, Bernaola L, Hale A, Kimbeng C, Pontif M, Baisakh N (2013) Identification of cold-responsive genes in energycane for their use in genetic diversity analysis and future functional marker development. Plant Sci 211:122–131.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Hale AL, Dufrene EO, Tew TL et al (2013) Registration of ‘Ho 02-113’ sugarcane. J Plant Regist 7(1):51–57.

  27. 27.

    Knoll JE, Anderson WF, Richard EP et al (2013) Harvest date effects on biomass quality and ethanol yield of new energycane (Saccharum hyb.) genotypes in the Southeast USA. Biomass Bioenergy 56:147–156.

    CAS  Article  Google Scholar 

  28. 28.

    Mukherjee SK (1957) Origin and distribution of Saccharum. Bot Gaz 119:55–61

    Article  Google Scholar 

  29. 29.

    Chen CF (1953) Genetical analysis of morphological characters of OMM type hybrid obtained from POJ 2725 × Miscanthus japonicus cross. In: Proceedings International Society Sugar Cane Technologists. pp 533–546

  30. 30.

    Chen WH, Huang YJ, Shen IS, Shih SC (1983) Utilization of Miscanthus germplasm in sugarcane breeding in Taiwan. In: Proc. Int. Soc. Sugarcane Technol. pp 641–648

  31. 31.

    Ram B, Sreenivasan TV, Sahi BK, Singh N (2001) Introgression of low temperature tolerance and red rot resistance from Erianthus in sugarcane. Euphytica 122(1):145–153.

  32. 32.

    D’Hont A, Rao PS, Feldmann P et al (1995) Identification and characterisation of sugarcane intergeneric hybrids, Saccharum officinarum × Erianthus arundinaceus, with molecular markers and DNA in situ hybridisation. Theor Appl Genet 91(2):320–326.

  33. 33.

    Piperidis G, Christopher MJ, Carroll BJ, Berding N, D'Hont A (2000) Molecular contribution to selection of intergeneric hybrids between sugarcane and the wild species Erianthus arundinaceus. Genome 43(6):1033–1037.

  34. 34.

    Pachakkil B, Terajima Y, Ohmido N et al (2019) Cytogenetic and agronomic characterization of intergeneric hybrids between Saccharum spp. hybrid and Erianthus arundinaceus. Sci Rep 9:1748.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    OGTR (2011) Office of the gene technology regulator. In: The biology of the Saccharum spp. (sugarcane). 3:1–64.$FILE/biologysugarcane11.pdf

  36. 36.

    Moore PH, Paterson AH, Tew T (2013) Sugarcane: the crop, the plant, and domestication. In: Moore PH, Botha FC (eds) Sugarcane: Physiology, biochemistry, and functional biology, 1st edn. John Wiley & Sons, Inc., pp 1–17.

  37. 37.

    Chen YH, Lo CC (1989) Disease resistance and sugar content in Saccharum-Miscanthus hybrids. Taiwan Sugar 36(3):9–12

  38. 38.

    Lo CC, Chia YH, Chen WH, et al (1978) Collecting miscanthus germplasm in Taiwan. In: Proceedings of the International Society of Sugar Cane Technologists. pp 59–69

  39. 39.

    Deren CW, Snyder GH, Tai PYP et al (1991) Biomass production and biochemical methane potential of seasonally flooded inter-generic and inter-specific Saccharum hybrids. Bioresour Technol 36(2):179–184.

  40. 40.

    Burner DM, Tew TL, Harvey JJ, Belesky DP (2009) Dry matter partitioning and quality of Miscanthus, Panicum, and Saccharum genotypes in Arkansas, USA. Biomass Bioenergy 33(4):610–619.

  41. 41.

    Ando S, Sugiura M, Yamada T et al (2011) Overwintering ability and dry matter production of sugarcane hybrids and relatives in the Kanto region of Japan. Japan Agric Res Q 45(3):259–267.

  42. 42.

    Chen YH (1993) Genetics and breeding studies on Saccharum-Miscanthus nobilization. Mem Coll Agric, Natl Taiwan Univ 33:345–350

  43. 43.

    Park J, Yu Q, Gracia NS, et al (2011) Development of new intergeneric cane hybrids, Miscanes, as a source of biomass feedstock for biofuel production. In: Plant and Animal Genomes XIX Conference, San Diego. pp 15–19

  44. 44.

    Stewart JR, Toma Y, Fernandez FG et al (2009) The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan: a review. GCB Bioenergy 1(2):126–153.

  45. 45.

    Fonteyne S, Roldán-Ruiz I, Muylle H, et al (2016) A review of frost and chilling stress in Miscanthus and its importance to biomass yield. In: Barth S, Murphy-Bokern D, Kalinina O, Taylor G, Jones M (eds) Perennial biomass crops for a resource-constrained world. pp 127-144.

  46. 46.

    Hodkinson TR, Chase MW, Renvoize SA (2002) Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR PCR. Ann Bot 89(5):627–636.

  47. 47.

    Farrell AD, Clifton-Brown JC, Lewandowski I, Jones MB (2006) Genotypic variation in cold tolerance influences the yield of Miscanthus. Ann Appl Biol 149(3):337–345.

  48. 48.

    Clifton-Brown JC, Lewandowski I (2000) Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance. New Phytol 148(2):287–294.

  49. 49.

    Anderson E, Arundale R, Maughan M et al (2011) Growth and agronomy of Miscanthus × giganteus for biomass production. Biofuels 2(1):167–183.

  50. 50.

    Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25(4):335–361.

  51. 51.

    Heaton EA, Flavell RB, Mascia PN et al (2008) Herbaceous energy crop development: recent progress and future prospects. Curr Opin Biotechnol 19(3):202–209.

  52. 52.

    Pyter R, Heaton E, Dohleman F et al (2009) Agronomic experiences with Miscanthus ×giganteus in Illinois, USA. In: Mielenz J (ed) Biofuels. Methods in molecular biology (methods and protocols). Humana Press, Totowa, pp 41–52

    Google Scholar 

  53. 53.

    Beale CV, Bint DA, Long SP (1996) Leaf photosynthesis in the C4-grass Miscanthus ×giganteus, growing in the cool temperate climate of southern England. J Exp Bot 47(2):267–273.

  54. 54.

    Price L, Bullard M, Lyons H et al (2004) Identifying the yield potential of Miscanthus × giganteus: an assessment of the spatial and temporal variability of M. × giganteus biomass productivity across England and Wales. Biomass Bioenergy 26(1):3–13.

  55. 55.

    Heaton EA, Dohleman FG, Miguez AF, et al (2010) Miscanthus: a promising biomass crop. In: Advances in botanical research, vol. 56. Academic Press, pp 75–137

  56. 56.

    Beale CV, Long SP (1997) The effects of nitrogen and irrigation on the productivity of the C4 grasses Miscanthus × giganteus and Spartina cynosuroides. Asp Appl Biol (49) 225–230

    Google Scholar 

  57. 57.

    Beale CV, Morison JI, Long SP (1999) Water use efficiency of C4 perennial grasses in a temperate climate. Agric For Meteorol 96(1-3):103–115.

  58. 58.

    Amalraj VA, Balasundaram N (2006) On the taxonomy of the members of “Saccharum complex”. Genet Resour Crop Evol 53(1):35–41.

  59. 59.

    Sacks EJ, Juvik JA, Lin Q et al (2013) The gene pool of Miscanthus species and its improvement. In: Paterson AH (ed) Genomics of the Saccharinae. Springer, New York, pp 73–101

    Chapter  Google Scholar 

  60. 60.

    Li HW (1948) Cytological studies of sugarcane and its relatives I. hybrids between Saccharum officinarum, Miscanthus japonicus and Saccharum spontaneum. Bot Bull Acad Sin (Taipei) (2):147–160

  61. 61.

    Li HW (1961) Cytological studies on sugarcane and its relatives. XVIII. Trigeneric hybrids of Saccharum officinarum L., Sclerostachya fusca A. Camus, and Miscanthus japonicus Anderss. Bot Bull Acad Sin (Taipei) (2): 1–9

  62. 62.

    Loh CS, Wu TH (1949) A note on the trihybrids of (S. officinarum × S. robustum) × Miscanthus japonica. Sugarcane Res Annu Prog Rep (3):377–386

    Google Scholar 

  63. 63.

    Price S (1965) Interspecific hybridization in sugarcane breeding. In: Proc Int Soc Sugar Cane Technol. pp 1021–1026

  64. 64.

    Xiao F, Tai PYP (1994) Antheral transformation into stigma in interspecific and intergeneric hybrids of Saccharum. J Am Soc Sugar Cane Technol 14:33–39.

  65. 65.

    Burner DM (1997) Chromosome transmission and meiotic behavior in various sugarcane crosses. J Am Soc Sugar Cane Technol 17:38–50.

  66. 66.

    Chen Y, Chen C, Lo C, others (2000) Extraordinary phenomenon of cell division in Saccharum, Miscanthus, and their nobilized progenies. Rep Taiwan Sugar Res Inst (170): 27–44

  67. 67.

    Price S, Daniels J (1968) Cytology of South Pacific sugarcane and related grasses. J Hered 59(2):141–145.

  68. 68.

    Grivet L, Glaszmann J-C, D’Hont A (2006) Molecular evidence for sugarcane evolution and domestication. In: Motley T, Zerega N, Cross H (eds) Darwin’s harvest. New approaches to the origins, evolution, and conservation of crops. Columbia University Press, New York, pp 49–66

    Google Scholar 

  69. 69.

    Burner DM, Hale AL, Carver P et al (2015) Biomass yield comparisons of giant miscanthus, giant reed, and miscane grown under irrigated and rainfed conditions. Ind Crops Prod 76:1025–1032.

    Article  Google Scholar 

  70. 70.

    Chen YH, Chen C, Lo CC (1993) Studies on anatomy and morphology in Saccharum-Miscanthus nobilized hybrids. 1. Transmission of tillering, ratooning, adaptation and disease resistance from Miscanthus spp. J Agric Assoc China (164):31–45

    Google Scholar 

  71. 71.

    Kar S, Zhang N, Nakashima T et al (2019) Saccharum × Miscanthus intergeneric hybrids (miscanes) exhibit greater chilling tolerance of C4 photosynthesis and post-chilling recovery than sugarcane (Saccharum spp. hybrids). GCB Bioenergy 11(11): 1318–1333.

  72. 72.

    Głowacka K, Adhikari S, Peng J, Gifford J, Juvik JA, Long SP, Sacks EJ (2014) Variation in chilling tolerance for photosynthesis and leaf extension growth among genotypes related to the C4 grass Miscanthus × giganteus. J Exp Bot 65(18):5267–5278.

  73. 73.

    Muchanga RA, Hirata T, Araki H (2017) Hairy vetch becomes an alternative basal N fertilizer in low-input fresh-market tomato production in plastic high tunnel. Hort J  86(4): 493–500.

  74. 74.

    Long SP (1983) C4 photosynthesis at low temperatures. Plant Cell Environ 6(4):345–363.

  75. 75.

    Baker NR, Long SP, Ort DR (1988) Photosynthesis and temperature, with particular reference to effects on quantum yield. In: Symposia of the Society for Experimental Biology. pp 347–375

  76. 76.

    Głowacka K, Jez˙owski S, Kaczmarek Z (2013) Gas exchange and yield in Miscanthus species for three years at two locations in Poland. Can J Plant Sci 93(4):627–637.

  77. 77.

    Long SP, Spence AK (2013) Toward cool C4 crops. Annu Rev Plant Biol 64:701–722.

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Artschwager E (1925) Anatomy of the vegetative organs of sugarcane. J Agric Res 30:197–221

    Google Scholar 

  79. 79.

    Viator RP, Richard EP (2012) Sugar and energy cane date of planting effects on cane, sucrose, and fiber yields. Biomass Bioenergy 40:82–85.

    CAS  Article  Google Scholar 

  80. 80.

    Dohleman FG, Heaton EA, Leakey ADB, Long SP (2009) Does greater leaf-level photosynthesis explain the larger solar energy conversion efficiency of Miscanthus relative to switchgrass? Plant Cell Environ 32(11):1525–1537.

  81. 81.

    He Y, Feng X, Fang J et al (2015) Comparison of the growth and biomass production of Miscanthus sinensis, Miscanthus floridulus and Saccharum arundinaceum. Spanish J Agric Res 13(3):e0703.

  82. 82.

    Jezowski S (2008) Yield traits of six clones of Miscanthus in the first 3 years following planting in Poland. Ind Crop Prod 27(1):65–68.

  83. 83.

    Pude R, Jezowski S (2003) Effect of selected morphogenetic traits on the growth and development of Miscanthus ssp. Biul IHAR (227): 573–583

    Google Scholar 

  84. 84.

    Weraduwage SM, Chen J, Anozie FC, Morales A, Weise SE, Sharkey TD (2015) The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana. Front Plant Sci 6:167.

    Article  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Vidya C, Sunny K, Vijayaraghava K et al (2002) Genetic variability and heritability of yield and related characters in yard-long bean. J Trop Agric 40:11–13

    Google Scholar 

  86. 86.

    Ma XF, Jensen E, Alexandrov N, Troukhan M, Zhang L, Thomas-Jones S, Farrar K, Clifton-Brown J, Donnison I, Swaller T, Flavell R (2012) High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis. PLoS One 7:e33821.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Thirugnanasambandam PP, Hoang NV, Henry RJ (2018) The challenge of analyzing the sugarcane genome. Front Plant Sci 9:614.

    Article  Google Scholar 

  88. 88.

    Nair NV, Somarajan KG, Balasundaram N et al (1980) Genetic variability, heritability and genetic advance in Saccharum officinarum L. Int Sugar J 82(981):275–276

  89. 89.

    Chaudhary RR (2001) Genetic variability and heritability in sugarcane. Nepal Agric Res J 4&5:56–59.

  90. 90.

    Jamoza JE, Owuoche J, Kiplagat O et al (2014) Broad-sense heritability estimation and correlation among sugarcane (Saccharum spp. hybrids) yield and some agronomic traits in western Kenya. Int J Agric Policy Res 2(1):16–25

  91. 91.

    Tena E, Mekbib F, Ayana A (2016) Heritability and correlation among sugarcane (Saccharum spp.) yield and some agronomic and sugar quality traits in Ethiopia. Am J Plant Sci 7(10):1453–1477.

  92. 92.

    Khan FA, Iqbal MY, Sultan M (2007) Morphogenetic behaviour of some agronomic traits of sugarcane (Saccharum officinarum L.). Pakistan J Agric Sci 44(4):600–603

Download references


We express sincere gratitude to the staff at the Field Science Center for Northern Biosphere for help in setting up and maintaining the project.


This research was supported by the Department of Energy (DOE) Office of Science, Office of Biological and Environmental Research (BER), grant no. DE-SC0016264 and the Sumitomo Foundation, grant no. 163348. Suraj Kar acknowledges the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) scholarship to pursue his doctoral studies at Hokkaido University, Japan.

Author information



Corresponding author

Correspondence to Toshihiko Yamada.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material


(DOCX 812 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kar, S., Weng, TY., Nakashima, T. et al. Field Performance of Saccharum × Miscanthus Intergeneric Hybrids (Miscanes) Under Cool Climatic Conditions of Northern Japan. Bioenerg. Res. 13, 132–146 (2020).

Download citation


  • Sugarcane
  • Photosynthesis
  • Biomass
  • Morphology
  • Heritability