Skip to main content
Log in

Improved Cellulosic Ethanol Titres from Highly Lignified Cotton Trash Residues Using Various Batch and Fed-Batch Process Configurations

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

This study investigates a fed-batch simultaneous saccharification fermentation (F-SSF) process to increase ethanol titres from highly lignified (41.6 wt.%) cotton gin trash residue. The optimal initial solid loading, enzyme dose, feed quantities and intervals to maximize substrate feed and subsequent ethanol titres were examined. Under batch SSF conditions, initial extracted cotton gin trash (ECGT) solid loadings were maximised at 19.35 wt.% and attained an ethanol titre of 23.3 g/l with a corresponding yield of 53.7%. Operating under optimised F-SSF mode, fermentations were initiated with 16.13 wt% EGCT solids followed by fresh ECGT feeds of 16.13 wt% and 12.9 wt.% at 12-h intervals. Cellulase levels were maintained at 44 FPU/g glucan throughout the fermentations. The final ethanol titre of 41 .4 g/l with a corresponding conversion rate of 70.1% was achieved after 72 h. Comparable ethanol yields of 40 g/l with 67.8% conversion were realized with lower cellulase dosing (25 FPU g/glucan) but only after extending the fermentation by 24 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guo MX, Song WP (2019) The growing US bioeconomy: drivers, development and constraints. New Biotechnol 49:48–57

    CAS  Google Scholar 

  2. Hudiburg TW, Wang W, Khanna M, Long SP, Dwivedi P, Parton WJ, Hartman M, DeLucia EH (2016) Impacts of a 32-billion-gallon bioenergy landscape on land and fossil fuel use in the US. Nat Energy 1:15005

    Google Scholar 

  3. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861

    PubMed  CAS  Google Scholar 

  4. Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25(4):153–157

    PubMed  CAS  Google Scholar 

  5. Paulova L, Patakova P, Branska B, Rychtera M, Melzoch K (2015) Lignocellulosic ethanol: technology design and its impact on process efficiency. Biotechnol Adv 33(6, Part 2):1091–1107

    CAS  Google Scholar 

  6. Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19(4):1109–1117

    PubMed  CAS  Google Scholar 

  7. Larsen J, Petersen MO, Thirup L, Li HW, Iversen FK (2008) The IBUS process - lignocellulosic bioethanol close to a commercial reality. Chem Eng Technol 31:765–772

    CAS  Google Scholar 

  8. Fan Z, South C, Lyford K, Munsie J, van Walsum P, Lynd LR (2003) Conversion of paper sludge to ethanol in a semicontinuous solids-fed reactor. Bioprocess Biosyst Eng 26(2):93–101

    PubMed  CAS  Google Scholar 

  9. De Bari I, Viola E, Barisano D, Cardinale M, Nanna F, Zimbardi F, Cardinale G, Braccio G (2002) Ethanol production at flask and pilot scale from concentrated slurries of steam-exploded Aspen. Ind Eng Chem Res 41(7):1745–1753

    Google Scholar 

  10. Liu Z-H, Qin L, Zhu J-Q, Li B-Z, Yuan Y-J (2014) Simultaneous saccharification and fermentation of steam-exploded corn stover at high glucan loading and high temperature. Biotechnol Biofuels 7(1):1–16

    CAS  Google Scholar 

  11. Modenbach AA, Nokes SE (2013) Enzymatic hydrolysis of biomass at high-solids loadings – a review. Biomass Bioenergy 56:526–544

    CAS  Google Scholar 

  12. Kristensen J, Felby C, Jørgensen H (2009) Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels 2(1):1–10

    Google Scholar 

  13. Koppram R, Tomás-Pejó E, Xiros C, Olsson L (2014) Lignocellulosic ethanol production at high-gravity: challenges and perspectives. Trends Biotechnol 32(1):46–53

    PubMed  CAS  Google Scholar 

  14. Jørgensen H, Pinelo M (2017) Enzyme recycling in lignocellulosic biorefineries. Biofuels Bioprod Biorefin 11(1):150–167

    Google Scholar 

  15. Maeda RN, Barcelos CA, Anna LMMS, Pereira N (2013) Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation. J Biotechnol 163(1):38–44

    PubMed  CAS  Google Scholar 

  16. Cheng N, Koda K, Tamai Y, Yamamoto Y, Takasuka TE, Uraki Y (2017) Optimization of simultaneous saccharification and fermentation conditions with amphipathic lignin derivatives for concentrated bioethanol production. Bioresour Technol 232:126–132

    PubMed  CAS  Google Scholar 

  17. Zhang T, Zhu M-J (2017) Enhanced bioethanol production by fed-batch simultaneous saccharification and co-fermentation at high solid loading of Fenton reaction and sodium hydroxide sequentially pretreated sugarcane bagasse. Bioresour Technol 229:204–210

    PubMed  CAS  Google Scholar 

  18. Raj K (2019) Improved high solid loading enzymatic hydrolysis of low-temperature aqueous ammonia soaked sugarcane bagasse using laccase-mediator system and high concentration ethanol production. Ind Crop Prod 131:32-40-2019 v.2131

    Google Scholar 

  19. Gao Y, Xu J, Yuan Z, Jiang J, Zhang Z, Li C (2018) Ethanol production from sugarcane bagasse by fed-batch simultaneous saccharification and fermentation at high solids loading. Energy Sci Eng 6(6):810–818

    CAS  Google Scholar 

  20. Vancov T, Palmer J, Keen B (2018) A two stage pretreatment process to maximise recovery of sugars from cotton gin trash. Bioresour Technol Rep 4:114–122

    Google Scholar 

  21. McIntosh S, Palmer J, Egbuta M, Liu L, Vancov T (2019) Refining spent cotton gin trash following essential oil extraction for value added cellulosic sugars. Bioresour Technol Rep 7 (in Press)

    Google Scholar 

  22. Chum H, Johnson D, Black S, Overend R (1990) Pretreatment-catalyst effects and the combined severity parameter. Appl Biochem Biotechnol 24-25(1):1–14

    CAS  Google Scholar 

  23. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass. NREL Laboratory Analytical Proceedure; NREL/TP-510-42618. Version 08-03-2012. Natl Renew Energy Lab

  24. Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84–86

  25. dos Santos AC, Ximenes E, Kim Y, Ladisch MR (2019) Lignin–enzyme interactions in the hydrolysis of lignocellulosic biomass. Trends Biotechnol 37(5):518–531

    PubMed  Google Scholar 

  26. Weiss ND, Felby C, Thygesen LG (2019) Enzymatic hydrolysis is limited by biomass-water interactions at high-solids: improved performance through substrate modifications. Biotechnol Biofuels 12:3

    PubMed  PubMed Central  Google Scholar 

  27. Cara C, Ruiz E, Oliva JM, Sáez F, Castro E (2008) Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Bioresour Technol 99(6):1869–1876

    PubMed  CAS  Google Scholar 

  28. Du J, Cao Y, Liu G, Zhao J, Li X, Qu Y (2017) Identifying and overcoming the effect of mass transfer limitation on decreased yield in enzymatic hydrolysis of lignocellulose at high solid concentrations. Bioresour Technol 229:88–95

    PubMed  CAS  Google Scholar 

  29. Vásquez MP, da Silva JNC, de Souza MB, Pereira N (2007) Enzymatic hydrolysis optimization to ethanol production by simultaneous saccharification and fermentation. Appl Biochem Biotechnol 137(1):141–153

    PubMed  Google Scholar 

  30. Jorgensen H, Vibe-Pedersen J, Larsen J, Felby C (2007) Liquefaction of lignocellulose at high solids concentrations. Biotechnol Bioeng 96:862–870

    PubMed  Google Scholar 

  31. Romaní A, Garrote G, Parajó JC (2012) Bioethanol production from autohydrolyzed Eucalyptus globulus by simultaneous saccharification and fermentation operating at high solids loading. Fuel 94:305–312

    Google Scholar 

  32. Varga E, Klinke HB, Réczey K, Thomsen AB (2004) High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnol Bioeng 88(5):567–574

    PubMed  CAS  Google Scholar 

  33. Vancov T, Palmer J, Keen B (2019) Two-stage pretreatment process validation for production of ethanol from cotton gin trash. BioEnergy Research (in Press)

  34. McIntosh S, Vancov T, Palmer J, Morris S (2014) Ethanol production from cotton gin trash using optimised dilute acid pretreatment and whole slurry fermentation processes. Bioresour Technol 173:42–51

    PubMed  CAS  Google Scholar 

  35. Jeoh T, Agblevor FA (2001) Characterization and fermentation of steam exploded cotton gin waste. Biomass Bioenergy 21(2):109–120

    CAS  Google Scholar 

  36. Sahu S, Pramanik K (2018) Evaluation and optimization of organic acid pretreatment of cotton gin waste for enzymatic hydrolysis and bioethanol production. Appl Biochem Biotechnol 186:1047–1060. https://doi.org/10.1007/s12010-018-2790-7

    Article  PubMed  CAS  Google Scholar 

  37. Fockink DH, Maceno MAC, Ramos LP (2015) Production of cellulosic ethanol from cotton processing residues after pretreatment with dilute sodium hydroxide and enzymatic hydrolysis. Bioresour Technol 187:91–96

    PubMed  CAS  Google Scholar 

  38. McIntosh S, Palmer J, Zhang Z, Doherty WOS, Yazdani SS, Sukumaran RK, Vancov T (2017) Simultaneous saccharification and fermentation of pretreated Eucalyptus grandis under high solids loading. Ind Biotechnol 13(3):131–140

    CAS  Google Scholar 

  39. Dimos K, Paschos T, Louloudi A, Kalogiannis K, Lappas A, Papayannakos N, Kekos D, Mamma D (2019) Effect of various pretreatment methods on bioethanol production from cotton stalks, vol 5

    CAS  Google Scholar 

  40. Rudolf A, Alkasrawi M, Zacchi G, Liden G (2005) A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce. Enzym Microb Technol 37

    CAS  Google Scholar 

  41. Sassner P, Galbe M, Zacchi G (2006) Bioethanol production based on simultaneous saccharification and fermentation of steam-pretreated Salix at high dry-matter content. Enzym Microb Technol 39

    CAS  Google Scholar 

  42. Elliston A, Collins SRA, Wilson DR, Roberts IN, Waldron KW (2013) High concentrations of cellulosic ethanol achieved by fed batch semi simultaneous saccharification and fermentation of waste-paper. Bioresour Technol 134:117–126

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol dilute - acid pretreatment and enzymatic hydrolysis of corn stover. Technical Report NREL/TP-5100-47764: 1–147. National Renewable Energy Laboratory, Denver

    Google Scholar 

  44. Robak K, Balcerek M (2018) Review of second generation bioethanol production from residual biomass. Food Technol Biotechnol 56(2):174–187

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Berlin A, Gilkes N, Kurabi A, Bura R, Tu M, Kilburn D, Saddler J (2005) Weak lignin-binding enzymes. Appl Biochem Biotechnol 121(1):163–170

    PubMed  Google Scholar 

  46. Tu M, Chandra RP, Saddler JN (2007) Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates. Biotechnol Prog 23(2):398–406

    PubMed  CAS  Google Scholar 

  47. Sassner P, Galbe M, Zacchi G (2008) Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass Bioenergy 32(5):422–430

    CAS  Google Scholar 

  48. Wang Z, Lv Z, YAng X, Tian S (2013) Fed-batch mode optimization of SSF for cellulosic ethnaol production from steam-exploded corn stover. BioResources 8(4):5773–5782

    Google Scholar 

  49. Bauer N, Long C, Karki B, Gibbons W (2014) Increasing ethanol titer and reducing enzyme dosage via fed-batch, simultaneous Saccharification and fermentation in a high solids bioreactor. J Biomass Biofuels 1:38–48

    Google Scholar 

  50. Lee D, Yu AHC, Saddler JN (1995) Evaluation of cellulase recycling strategies for the hydrolysis of lignocellulosic substrates. Biotechnol Bioeng 45(4):328–336

    PubMed  CAS  Google Scholar 

  51. Qi B, Chen X, Su Y, Wan Y (2011) Enzyme adsorption and recycling during hydrolysis of wheat straw lignocellulose. Bioresour Technol 102(3):2881–2889

    PubMed  CAS  Google Scholar 

  52. Lu Y, Yang B, Gregg D, Saddler JN, Mansfield SD (2002) Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues. Appl Biochem Biotechnol 98(1):641–654

    PubMed  Google Scholar 

  53. Borjesson J, Engqvist M, Sipos B, Tjerneld F (2007) Effect of poly(ethylene glycol) on enzymatic hydrolysis and adsorption of cellulase enzymes to pretreated lignocellulose. Enzym Microb Technol 41(1–2):186–195

    Google Scholar 

  54. Eriksson T, Borjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzym Microb Technol 31:353–364

    CAS  Google Scholar 

  55. Kristensen JB, Börjesson J, Bruun MH, Tjerneld F, Jorgensen H (2007) Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose. Enzym Microb Technol 40(4):888–895

    CAS  Google Scholar 

  56. Tu M, Zhang X, Paice M, MacFarlane P, Saddler JN (2009) The potential of enzyme recycling during the hydrolysis of a mixed softwood feedstock. Bioresour Technol 100(24):6407–6415

    PubMed  CAS  Google Scholar 

  57. Tu M, Chandra RP, Saddler JN (2007) Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated lodgepole pine. Biotechnol Prog 23(5):1130–1137

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by Cotton Research Development Corporation (CRDC) for this work and NSW Department of Primary Industries (NSW DPI) and Southern Cross University (SCU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Vancov.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Figure S1

Correlation between final (96 h of hydrolysis) glucose concentration, glucan digestion and substrate load. (PDF 7 kb)

Figure S2

Correlation between final (96 h SSF) ethanol titre, ethanol yield and substrate load. (PDF 8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McIntosh, S., Palmer, J., Egbuta, M. et al. Improved Cellulosic Ethanol Titres from Highly Lignified Cotton Trash Residues Using Various Batch and Fed-Batch Process Configurations. Bioenerg. Res. 12, 1021–1032 (2019). https://doi.org/10.1007/s12155-019-10023-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-019-10023-8

Keywords

Navigation