Skip to main content
Log in

Biochemical Methane Potential Tests to Evaluate Anaerobic Digestion Enhancement by Thermal Hydrolysis Pretreatment

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

This study evaluates the effects of thermal hydrolysis (TH) pretreatment on anaerobic digestion (AD), through results obtained by biochemical methane potential (BMP) tests under mesophilic conditions (35 °C). Thickened sludge from a wastewater treatment plant (WWTP) was thermally treated under two different temperatures (150 and 170 °C) and reaction times (30 and 60 min). Results show a significant increase in soluble COD, compared with the untreated sludge, when sludge was treated at 170 °C for 60 min. Moreover, the following BMP tests point out that TH pretreatment of sludge accelerated the AD rate and increased the biogas yield contributing to an increase in methane production, ranging between 17 and 24% compared with the raw sludge. Furthermore, the hydrolysis constant was estimated and methane production and degree of disintegration of the TH pretreated sludge were correlated, in order to deep the knowledge on the hydrolysis as the AD rate-limiting step. Further, the combined effects of TH pretreatment and AD on sludge show a reduction of total and volatile solids up to 19% and 24%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abelleira J, Pérez-elvira SI, Sánchez-oneto J et al (2012) Advanced thermal hydrolysis of secondary sewage sludge a novel process combining thermal hydrolysis and hydrogen peroxide addition. Resour Conserv Recycl 59:52–57

    Article  Google Scholar 

  2. Pilli S, Yan S, Tyagi RD, Surampalli RY (2015) Thermal pretreatment of sewage sludge to enhance anaerobic digestion: a review. Crit Rev Environ Sci Technol 45:669–702

    Article  CAS  Google Scholar 

  3. Ferrentino R, Langone M, Andreottola G, Rada EC (2014) An anaerobic side-stream reactor in wastewater treatment: a review. WIT Trans Ecol Environ 191:1435–1446

    Article  Google Scholar 

  4. Ferrentino R, Merzari F, Andreottola G (2019) Optimization of Fe2+/H2O2 ratio in Fenton process to increase dewaterability and solubilisation of sludge. Environ Technol in press

  5. Oliveira JV, Duarte T, Costa JC, Cavaleiro AJ, Pereira MA, Alves MM (2018) Improvement of biomethane production from sewage sludge in co-digestion with glycerol and waste frying oil, using a design of experiments. Bioenergy Res 11:763–771

    Article  Google Scholar 

  6. Ding HH, Chang S, Liu Y (2017) Biological hydrolysis pretreatment on secondary sludge: enhancement of anaerobic digestion and mechanism study. Bioresour Technol 244:989–995

    Article  CAS  PubMed  Google Scholar 

  7. Appels L, Degrève J, Van Der Bruggen B et al (2010) Influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion. Bioresour Technol 101:5743–5748

    Article  CAS  PubMed  Google Scholar 

  8. Bouallagui H, Marouani L, Hamdi M (2010) Performances comparison between laboratory and full-scale anaerobic digesters treating a mixture of primary and waste activated sludge. Resour Conserv Recycl 55:29–33

    Article  Google Scholar 

  9. Merzari F, Langone M, Andreottola G, Fiori L (2019) Methane production from process water of sewage sludge hydrothermal carbonization. A review. Valorising sludge through hydrothermal carbonization. Crit Rev Environ Sci Technol 49:947–988

    Article  CAS  Google Scholar 

  10. Khanal SK, Grewell D, Sung S, van Leeuwen J(H) (2007) Ultrasound applications in wastewater sludge pretreatment: a review. Crit Rev Environ Sci Technol 37:277–313

    Article  CAS  Google Scholar 

  11. Pilli S, Bhunia P, Yan S, LeBlanc RJ, Tyagi RD, Surampalli RY (2011) Ultrasonic pretreatment of sludge: a review. Ultrason Sonochem 18:1–18

    Article  CAS  PubMed  Google Scholar 

  12. Neumann P, Pesante S, Venegas M, Vidal G (2016) Developments in pre-treatment methods to improve anaerobic digestion of sewage sludge. Rev Environ Sci Biotechnol 15:173–211

    Article  CAS  Google Scholar 

  13. Carrère H, Dumas C, Battimelli A et al (2010) Pretreatment methods to improve sludge anaerobic degradability: a review. J Hazard Mater 183:1–15

    Article  CAS  PubMed  Google Scholar 

  14. Barber WPF (2016) Thermal hydrolysis for sewage treatment: a critical review. Water Res 104:53–71

    Article  CAS  PubMed  Google Scholar 

  15. Hii K, Baroutian S, Parthasarathy R, Gapes DJ, Eshtiaghi N (2014) A review of wet air oxidation and thermal hydrolysis technologies in sludge treatment. Bioresour Technol 155:289–299

    Article  CAS  PubMed  Google Scholar 

  16. Odeby T, Netteland T, Solheim OE (1996) Thermal hydrolysis as a profitable way of handling sludge. Chemical Water and Wastewater Treatment IV. Springer, Berlin

    Google Scholar 

  17. Kepp U, Machenbach I, Weisz N, Solheim OE (2000) Enhanced stabilisation of sewage sludge through thermal hydrolysis - three years of experience with full scale plant. Water Sci Technol 42:89–96

    Article  CAS  Google Scholar 

  18. Strong PJ, Mcdonald B, Gapes DJ (2011) Combined thermochemical and fermentative destruction of municipal biosolids : a comparison between thermal hydrolysis and wet oxidative pre-treatment. Bioresour Technol 102:5520–5527

    Article  CAS  PubMed  Google Scholar 

  19. Nazari L, Yuan Z, Santoro D, Sarathy S, Ho D, Batstone D, Xu C(C), Ray MB (2017) Low-temperature thermal pre-treatment of municipal wastewater sludge: process optimization and effects on solubilization and anaerobic degradation. Water Res 113:111–123

    Article  CAS  PubMed  Google Scholar 

  20. Liu X, Xu Q, Wang D, Zhao J, Wu Y, Liu Y, Ni BJ, Wang Q, Zeng G, Li X, Yang Q (2018) Improved methane production from waste activated sludge by combining free ammonia with heat pretreatment: performance, mechanisms and applications. Bioresour Technol 268:230–236

    Article  CAS  PubMed  Google Scholar 

  21. Kim D, Lee K, Park KY (2015) Enhancement of biogas production from anaerobic digestion of waste activated sludge by hydrothermal pre-treatment. Int Biodeterior Biodegradation 101:42–46

    Article  CAS  Google Scholar 

  22. Müller WR, Frommert I, Jörg R (2004) Standardized methods for anaerobic biodegradability testing. Rev Environ Sci Biotechnol 3:141–158

    Article  Google Scholar 

  23. Fiori L, Basso D, Castello D, Baratieri M (2014) Hydrothermal carbonization of biomass: design of a batch reactor and preliminary experimental results. Chem Eng Trans 37:55–60

    Google Scholar 

  24. Basso D, Weiss-Hortala E, Patuzzi F, Castello D, Baratieri M, Fiori L (2015) Hydrothermal carbonization of off-specification compost: a byproduct of the organic municipal solid waste treatment. Bioresour Technol 182:217–224

    Article  CAS  PubMed  Google Scholar 

  25. Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos JL, Guwy AJ, Kalyuzhnyi S, Jenicek P, van Lier JB (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 59:927–934

    Article  CAS  PubMed  Google Scholar 

  26. Neves L, Oliveira R, Alves MM (2004) Influence of inoculum activity on the bio-methanization of a kitchen waste under different waste/inoculum ratios. Process Biochem 39:2019–2024

    Article  CAS  Google Scholar 

  27. APHA, AWWA, WEF (2012) Standard methods for examination of water and waste water. 22nd Edition, American Public Health Association, Washington DC

  28. APAT-CNR-IRSA (2003) Metodi analitici per le acque. Volume Primo, Roma

  29. Kim DH, Jeong E, Oh SE, Shin HS (2010) Combined (alkaline+ultrasonic) pretreatment effect on sewage sludge disintegration. Water Res 44:3093–3100

    Article  CAS  PubMed  Google Scholar 

  30. Overend RP, Chornet E (1987) Fractionation of lignocellulosics by steam-aqueous pretreatments. Philos Trans R Soc Lond A 321:523–536

    Article  CAS  Google Scholar 

  31. Ferreira LC, Souza TSO, Fdz-Polanco F, Pérez-Elvira SI (2014) Thermal steam explosion pretreatment to enhance anaerobic biodegradability of the solid fraction of pig manure. Bioresour Technol 152:393–398

    Article  CAS  PubMed  Google Scholar 

  32. Xue Y, Liu H, Chen S, Dichtl N, Dai X, Li N (2015) Effects of thermal hydrolysis on organic matter solubilization and anaerobic digestion of high solid sludge. Chem Eng J 264:174–180

    Article  CAS  Google Scholar 

  33. Han Y, Zhuo Y, Peng D, Yao Q, Li H, Qu Q (2017) Influence of thermal hydrolysis pretreatment on organic transformation characteristics of high solid anaerobic digestion. Bioresour Technol 244:836–843

    Article  CAS  PubMed  Google Scholar 

  34. Dwyer J, Starrenburg D, Tait S, Barr K, Batstone DJ, Lant P (2008) Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability. Water Res 42:4699–4709

    Article  CAS  PubMed  Google Scholar 

  35. Everett JG (1972) Dewatering of wastewater sludge by heat treatment. Water Pollut Control Fed 44:92–100

    CAS  Google Scholar 

  36. Hung-Wei L, Xiao S, Le T, Al-Omari A, Higgins M, Boardman G, Novak J, Murthy S (2014) Evaluation of solubilization characteristics of thermal hydrolysis process. Conference Proceedings in WEFTEC

  37. Vlyssides AG, Karlis PK (2004) Thermal-alkaline solubilization of waste activated sludge as a pre-treatment stage for anaerobic digestion. Bioresour Technol 91:201–206

    Article  CAS  PubMed  Google Scholar 

  38. Li Y, Park SY, Zhu J (2011) Solid-state anaerobic digestion for methane production from organic waste. Renew Sust Energ Rev 15:821–826

    Article  CAS  Google Scholar 

  39. Zhong W, Zhang Z, Luo Y, Sun S, Qiao W, Xiao M (2011) Effect of biological pretreatments in enhancing corn straw biogas production. Bioresour Technol 102:11177–11182

    Article  CAS  PubMed  Google Scholar 

  40. Donoso-bravo A, Pérez-elvira S, Aymerich E, Fdz-polanco F (2011) Assessment of the influence of thermal pre-treatment time on the macromolecular composition and anaerobic biodegradability of sewage sludge. Bioresour Technol 102:660–666

    Article  CAS  PubMed  Google Scholar 

  41. Qiao W, Yan X, Ye J, Sun Y, Wang W, Zhang Z (2011) Evaluation of biogas production from different biomass wastes with/without hydrothermal pretreatment. Renew Energy 36:3313–3318

    Article  CAS  Google Scholar 

  42. Choi JM, Han SK, Lee CY (2018) Enhancement of methane production in anaerobic digestion of sewage sludge by thermal hydrolysis pretreatment. Bioresour Technol 259:207–213

    Article  CAS  PubMed  Google Scholar 

  43. Shimizu T, Kudo K, Nasu Y (1993) Anaerobic waste-activated sludge digestion- a bioconversion mechanism and kinetic model. Biotechnol Bioeng 41:1082–1091

    Article  CAS  PubMed  Google Scholar 

  44. Abelleira-Pereira JM, Pérez-Elvira SI, Sánchez-Oneto J, de la Cruz R, Portela JR, Nebot E (2015) Enhancement of methane production in mesophilic anaerobic digestion of secondary sewage sludge by advanced thermal hydrolysis pretreatment. Water Res 71:330–340

    Article  CAS  PubMed  Google Scholar 

  45. Appels L, Lauwers J, Gins G et al (2011) Parameter identification and modeling of the biochemical methane potential of waste activated sludge. Environ Sci Technol 45(9):4173–4178

    Article  CAS  PubMed  Google Scholar 

  46. Xu G, Chen S, Shi J, Wang S, Zhu G (2010) Combination treatment of ultrasound and ozone for improving solubilization and anaerobic biodegradability of waste activated sludge. J Hazard Mater 180:340–346

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Giada Benedetti for her help and support during the experimental activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Ferrentino.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrentino, R., Merzari, F., Fiori, L. et al. Biochemical Methane Potential Tests to Evaluate Anaerobic Digestion Enhancement by Thermal Hydrolysis Pretreatment. Bioenerg. Res. 12, 722–732 (2019). https://doi.org/10.1007/s12155-019-10017-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-019-10017-6

Keywords

Navigation