Skip to main content

Advertisement

Log in

Production of Biomass-Degrading Enzymes by Trichoderma reesei Using Liquid Hot Water-Pretreated Corncob in Different Conditions of Oxygen Transfer

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Enzymatic hydrolysis accounts for 20% of the total cost in the conversion process of lignocellulosic biomass into bioethanol. Therefore, production of biomass-degrading enzymes by using lignocellulosic residue as a fermentation substrate may be an alternative to decrease the production costs. In this study, corncob (CC) has been pretreated by liquid hot water (LHW) at 200 °C for 30 min and used as inducer source for production of biomass-degrading enzymes by Trichoderma reesei MUM 97.53. The pretreatment was used to increase the cellulose content and the accessibility to lignocellulosic material. Although the filamentous fungus secreted a broad range of cellulolytic and hemicellulolytic enzymes when grown on untreated CC, higher enzyme productions were obtained when cultured on LHW-pretreated CC in a 2-L stirred tank bioreactor (STB). Besides, the effects of aeration (2 and 4 vvm) and agitation (150 and 250 rpm) rates on enzyme production were studied by submerged fermentation in a batch STB and correlated with the volumetric oxygen transfer coefficient (kLa). Maximal cellulase, xylanase, and β-xylosidase productions were found at 150 rpm and 4 vvm, while the highest β-glucosidase levels were obtained at 150 rpm and 2 vvm, that corresponded to kLa values of 32.50 h−1 and 16.41 h−1, respectively. At higher agitation, a lower enzymatic production was observed probably due to the high shear stress in the fungal hyphae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pino MS, Rodríguez-Jasso RM, Michelin M, Flores-Gallegos AC, Morales-Rodriguez R, Teixeira JA, Ruiz HA (2018) Bioreactor design for enzymatic hydrolysis of biomass under the biorefinery concept – review. Chem Eng J 347:119–136

    Article  CAS  Google Scholar 

  2. Johnson E (2016) Integrated enzyme production lowers the cost of cellulosic ethanol. Biofuels Bioprod Biorefin 10:164–174

    Article  CAS  Google Scholar 

  3. Lee EJ, Lee BH, Kim BK, Lee JW (2013) Enhanced production of carboxymethylcellulase of a marine microorganism Bacillus subtilis subsp. subtilis A-53 in a pilot-scaled bioreactor by a recombinant Escherichia coli JM109/A-53 from rice bran. Mol Biol Rep 40:3609–3621

    Article  CAS  PubMed  Google Scholar 

  4. Cunha FM, Kreke T, Badino AC, Farinas CS, Ximenes E, Ladisch MR (2014) Liquefaction of sugarcane bagasse for enzyme production. Bioresour Technol 172:249–252

    Article  CAS  PubMed  Google Scholar 

  5. Yang P, Zhang H, Cao L, Zheng Z, Jiang S (2016) Construction of Aspergillus niger integrated with cellulase gene from Ampullaria gigas Spix for improved enzyme production and saccharification of alkaline-pretreated rice straw. 3 Biotech 6(2):236

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ravindran R, Jaiswal AK (2016) Microbial enzyme production using lignocellulosic food industry wastes as feedstock: a review. Bioengineering 3(30):1–22

    Google Scholar 

  7. Biswas R, Persad A, Bisaria VS (2014) Production of cellulolytic enzymes. In: Bisaria VS, Kondo A (eds) Bioprocessing of renewable resources to commodity bioproducts. Wiley, pp 105–132

  8. Michelin M, Ruiz HA, Silva DP, Ruzene DS, Teixeira JA, Polizeli MLTM (2014) Cellulose from lignocellulosic waste. In: Ramawat KG, Mérillon J-M (eds) Polysaccharides: bioactivity and biotechnology. Springer, pp 475–512

  9. Menezes DB, Brazil OAV, Romanholo-Ferreira LF, Polizeli MLTM, Ruzene DS, Silva DP, Costa LP, Hernández-Macedo ML (2017) Prospecting fungal ligninases using corncob lignocellulosic fractions. Cellulose 24:4355–4365

    Article  CAS  Google Scholar 

  10. Dashtban M, Schraft H, Qin WS (2009) Fungal bioconversion of lignocellulosic residues - opportunities & perspectives. Int J Biol Sci 5:578–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang L, Liu Y, Niu X, Liu Y, Liao W (2012) Effects of acid and alkali treated lignocellulosic materials on cellulase/xylanase production by Trichoderma reesei Rut C-30 and corresponding enzymatic hydrolysis. Biomass Bioenergy 37:16–24

    Article  CAS  Google Scholar 

  12. Michelin M, Romaní A, Salgado JM, Domingues L, Teixeira JA (2017) Production of hemicellulases, xylitol, and furan from hemicellulosic hydrolysates using hydrothermal pretreatment. In: Ruiz HA, Thomsen MH, Trajano HL (eds) Hydrothermal processing in biorefineries – production of bioethanol and high added-value compounds of second and third generation biomass. Springer, pp 285–316

  13. Lo CM, Zhang Q, Callow NV, Ju LK (2010) Cellulase production by continuous culture of Trichoderma reesei Rut C30 using acid hydrolysate prepared to retain more oligosaccharides for induction. Bioresour Technol 101(2):717–723

    Article  CAS  PubMed  Google Scholar 

  14. Bakri Y, Akeed Y, Thonart P (2012) Comparison between continuous and batch processing to produce xylanase by Penicillium canescens 10-10c. Braz J Chem Eng 29:441–447

    Article  CAS  Google Scholar 

  15. Michelin M, Polizeli MLTM, Ruzene DS, Silva DP, Vicente AA, Jorge JA, Terenzi HF, Teixeira JA (2012a) Xylanase and β-xylosidase production by Aspergillus ochraceus: new perspectives for the application of wheat straw autohydrolysis liquor. Appl Biochem Biotechnol 166:336–347

    Article  CAS  PubMed  Google Scholar 

  16. Michelin M, Polizeli MLTM, Ruzene DS, Silva DP, Ruiz HA, Vicente AA, Jorge JA, Terenzi HF, Teixeira JA (2012b) Production of xylanase and β-xylosidase from autohydrolysis liquor of corncob using two fungal strains. Bioprocess Biosyst Eng 35:1185–1192

    Article  CAS  PubMed  Google Scholar 

  17. Vitcosque GL, Fonseca RF, Rodríguez-Zúñiga UF, Bertucci Neto V, Couri S, Farinas CS (2012) Production of biomass-degrading multienzyme complexes under solid-state fermentation of soybean meal using a bioreactor. Enzyme Res 2012:1–9

    Article  CAS  Google Scholar 

  18. Singh S, du Preez JC, Pillay B, Prior BA (2000) The production of hemicellulases by Thermomyces lanuginosus strain SSBP: influence of agitation and dissolved oxygen tension. Appl Microbiol Biotechnol 54:698–704

    Article  CAS  PubMed  Google Scholar 

  19. Michelin M, Mota AMO, Polizeli MLTM, Silva DP, Vicente AA, Teixeira JA (2013) Influence of volumetric oxygen transfer coefficient (k L a) on xylanases batch production by Aspergillus niger van Tieghem in stirred tank and internal-loop airlift bioreactors. Biochem Eng J 80:19–26

    Article  CAS  Google Scholar 

  20. Techapun C, Poosaran N, Watanabe M, Sasaki K (2003) Optimization of aeration and agitation rates to improve cellulase-free xylanase production by thermotolerant Streptomyces sp. Ab 106 and repeated fed-batch cultivation using agricultural waste. J Biosci Bioeng 95(3):298–301

    Article  CAS  PubMed  Google Scholar 

  21. Potumarthi R, Ch S, Jetty A (2007) Alkaline protease production by submerged fermentation in stirred tank reactor using Bacillus licheniformis NCIM-2042: effect of aeration and agitation regimes. Biochem Eng J 34:185–192

    Article  CAS  Google Scholar 

  22. Fenice M, Barghini P, Selbmann L, Federici F (2012) Combined effects of agitation and aeration on the chitinolytic enzymes production by the Antarctic fungus Lecanicillium muscarium CCFEE 5003. Microb Cell Factories 11:12

    Article  CAS  Google Scholar 

  23. Dixit P, Mehta A, Gahlawat G, Prasad GS, Choudhury AR (2015) Understanding the effect of interaction among aeration, agitation and impeller positions on mass transfer during pullulan fermentation by Aureobasidium pullulans. RSC Adv 5:38984–38994

    Article  CAS  Google Scholar 

  24. Zhou Y, Han L-R, He H-W, Sang B, Yu D-L, Feng J-T, Zhang X (2018) Effects of agitation, aeration and temperature on production of a novel glycoprotein GP-1 by Streptomyces kanasenisi ZX01 and scale-up based on volumetric oxygen transfer coefficient. Molecules 23(125):1–14

    Google Scholar 

  25. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. NREL – LAP Technical Report NREL/TP-510-42618

  26. Mandels M, Weber J (1969) The production of cellulases. Adv Chem Ser 95:391–414

    Article  CAS  Google Scholar 

  27. Miller GH (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–429

    Article  CAS  Google Scholar 

  28. Lima MS, Damasio ARL, Crnkovic PM, Pinto MR, da Silva AM, da Silva JCR, Segato F, de Lucas RC, Jorge JA, Polizeli MLTM (2016) Co-cultivation of Aspergillus nidulans recombinant strains produces an enzymatic cocktail as alternative to alkaline sugarcane bagasse pretreatment. Front Microbiol 7:583

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ferreira A, Pereira G, Teixeira JA, Rocha F (2012) Statistical tool combined with image analysis to characterize hydrodynamics and mass transfer in a bubble column. Chem Eng J 180:216–228

    Article  CAS  Google Scholar 

  30. Michelin M, Ruiz HA, Polizeli MLTM, Teixeira JA (2018) Multi-step approach to add value to corncob: production of biomass degrading enzymes, lignin and fermentable sugars. Bioresour Technol 247:582–590

    Article  CAS  PubMed  Google Scholar 

  31. Cunha FM, Esperança MN, Florencio C, Vasconcellos VM, Farinas CS, Badino AC (2015) Three-phasic fermentation systems for enzyme production with sugarcane bagasse in stirred tank bioreactors: effects of operational variables and cultivation method. Biochem Eng J 97:32–39

    Article  CAS  Google Scholar 

  32. Gottschalk LMF, Oliveira RA, Bon EPS (2010) Cellulases, xylanases, β-glucosidase and ferulic acid esterase produced by Trichoderma and Aspergillus act synergistically in the hydrolysis of sugarcane bagasse. Biochem Eng J 51:72–78

    Article  CAS  Google Scholar 

  33. Tiwari P, Misra BN, Sangwan NS (2013) β-Glucosidases from the fungus Trichoderma: an efficient cellulase machinery in biotechnological applications – review. Biomed Res Int 2013:1–10

  34. Khonzue P, Laothanachareon T, Rattanaphan N, Tinnasulanon P, Apawasin S, Paemanee A, Ruanglek V, Tanapongpipat S, Champreda V, Eurwilaichitr L (2011) Optimization of xylanase production from Aspergillus niger for biobleaching of eucalyptus pulp. Biosci Biotechnol Biochem 75(6):29–34

    Article  CAS  Google Scholar 

  35. Guimarães NCA, Sorgatto M, Peixoto-Nogueira SC, Betini JHA, Zanoelo FF, Marques MR, Polizeli MLTM, Giannesi GC (2013) Bioprocess and biotechnology: effect of xylanase from Aspergillus niger and Aspergillus flavus on pulp biobleaching and enzyme production using agroindustrial residues as substract. SpringerPlus 2:380

    Article  CAS  Google Scholar 

  36. Ajijolakewu AK, Leh CP, Abdullah WNW, Lee CK (2017) Optimization of production conditions for xylanase production by newly isolated strain Aspergillus niger through solid state fermentation of oil palm empty fruit bunches. Biocatal Agric Biotechnol 11:239–247

    Article  Google Scholar 

  37. Michelin M, Teixeira JA (2016) Liquid hot water pretreatment of multi feedstocks and enzymatic hydrolysis of solids obtained thereof. Bioresour Technol 216:862–869

    Article  CAS  PubMed  Google Scholar 

  38. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391

    Article  CAS  PubMed  Google Scholar 

  39. Reis L, Fontana RC, Delabona PS, Lima DJS, Camassola M, Pradella JGC, Dillon AJP (2013) Increased production of cellulases and xylanases by Penicillium echinulatum S1M29 in batch and fed-batch culture. Bioresour Technol 146:597–603

    Article  CAS  PubMed  Google Scholar 

  40. Li P, Liang H, Lin W-T, Feng F, Luo L (2015) Microbiota dynamics associated with environmental conditions and potential roles of cellulolytic communities in traditional chinese cereal starter solid-state fermentation. Appl Environ Microbiol 81(15):5144–5156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Patel N, Choy V, Malouf P, Thibault J (2009) Growth of Trichoderma reesei RUTC30 in stirred tank and reciprocating plate bioreactors. Process Biochem 44:1164–1171

    Article  CAS  Google Scholar 

  42. Fontana RC, Silveira MM (2012) Production of polygalacturonases by Aspergillus oryzae in stirred tank and internal- and external-loop airlift reactors. Bioresour Technol 123:157–163

    Article  CAS  PubMed  Google Scholar 

  43. Bakri Y, Mekaeel A, Koreih A (2011) Influence of agitation speeds and aeration rates on the xylanase activity of Aspergillus niger SS7. Braz Arch Biol Technol 54(4):659–664

    Article  CAS  Google Scholar 

  44. Ghoshal G, Banerjee UC, Shivhare US (2014) Xylanase production by Penicillium citrinum in laboratory-scale stirred tank reactor. Chem Biochem Eng Q 28(3):399–408

    Article  CAS  Google Scholar 

  45. Braun S, Vecht-Lifshitz SE (1991) Mycelial morphology and metabolite production. Trends Biotechnol 9:63–68

    Article  Google Scholar 

  46. Shin W-S, Lee D, Kim S, Jeong Y-S, Chun G-T (2013) Application of scale-up criterion of constant oxygen mass transfer coefficient (kLa) for production of itaconic acid in a 50 L pilot-scale fermentor by fungal cells of Aspergillus terreus. J Microbiol Biotechnol 23(10):1445–1453

    Article  CAS  PubMed  Google Scholar 

  47. Khanahmadi M, Arezi I, Amiri M-S, Miranzadeh M (2018) Bioprocessing of agro-industrial residues for optimization of xylanase production by solid- state fermentation in flask and tray bioreactor. Biocatal Agric Biotechnol 13:272–282

    Article  Google Scholar 

  48. Abdella A, Mazeed TE-S, El-Baz AF, Yang S-T (2016) Production of !-glucosidase from wheat bran and glycerol by Aspergillus niger in stirred tank and rotating fibrous bed bioreactors. Process Biochem 51:1331–1337

    Article  CAS  Google Scholar 

  49. Shahriarinour M, Ramanan RN, Wahab MNA, Mohamad R, Mustafa S, Ariff AB (2011) Improved cellulase production by Aspergillus terreus using oil palm empty fruit bunch fibre as substrate in a stirred tank bioreactor through optimization of the fermentation conditions. BioResources 6(3):2663–2675

    CAS  Google Scholar 

  50. Saini R, Saini JK, Adsul M, Patel AK, Mathur A, Tuli D, Singhania RR (2015) Enhanced cellulase production by Penicillium oxalicum for bio-ethanol application. Bioresour Technol 188:240–246

    Article  CAS  PubMed  Google Scholar 

  51. Delabona PS, Farinas CS, Silva MR, Azzoni SF, Pradella JGC (2012) Use of a new Trichoderma harzianum strain isolated from the Amazon rainforest with pretreated sugar cane bagasse for on-site cellulase production. Bioresour Technol 107:517–521

    Article  CAS  Google Scholar 

  52. Ma L, Li C, Yang Z, Jia W, Zhang D, Chen S (2013) Kinetic studies on batch cultivation of Trichoderma reesei and application to enhance cellulase production by fed-batch fermentation. J Biotechnol 166:192–197

    Article  CAS  PubMed  Google Scholar 

  53. Michelin M, Polizeli MLTM, Silva DP, Ruzene DS, Vicente AA, Jorge JA, Terenzi HF, Teixeira JA (2011) Production of xylanolytic enzymes by Aspergillus terricola in stirred tank and airlift tower loop bioreactors. J Ind Microbiol Biotechnol 38:1979–1984

    Article  CAS  PubMed  Google Scholar 

  54. Ahamed A, Vermette P (2008) Enhanced enzyme production from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger LMA grown as fed batch in a stirred tank bioreactor. Biochem Eng J 42:41–46

    Article  CAS  Google Scholar 

  55. Abdella A, Mazeed TE-S, Yang S-T, El-Baz AF (2014) Production of β-glucosidase by Aspergillus niger on wheat bran and glycerol in submerged culture: factorial experimental design and process optimization. Curr Biotechnol 3:197–206

    Article  CAS  Google Scholar 

  56. Schneider WDH, Reis L, Fontana RC, Dillon AJP, Camassola M (2018) Exploring strategies for the use of glycerol in the production of cellulases and xylanases, and the use of these enzymes in the hydrolysis of lignocellulosic biomass. Ind Crop Prod 122:114–118

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Dr. Nelson Lima from MUM (Micoteca da Universidade do Minho, Portugal) by the fungal strain.

Funding

Michele Michelin is a recipient of a FCT fellowship (SFRH/BPD/100786/2014). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 – Programa Operacional Regional do Norte.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Michelin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michelin, M., Mota, A.M.O., Silva, D.P. et al. Production of Biomass-Degrading Enzymes by Trichoderma reesei Using Liquid Hot Water-Pretreated Corncob in Different Conditions of Oxygen Transfer. Bioenerg. Res. 12, 583–592 (2019). https://doi.org/10.1007/s12155-019-09991-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-019-09991-8

Keywords

Navigation