BioEnergy Research

, Volume 12, Issue 2, pp 359–369 | Cite as

Esterification of Levulinic Acid to Ethyl Levulinate Using Liquefied Oil Palm Frond-Based Carbon Cryogel Catalyst

  • Muzakkir Mohammad Zainol
  • Nor Aishah Saidina AminEmail author
  • Mohd Asmadi
  • Nur Aainaa Syahirah Ramli


Oil palm biomass, which is abundantly available in Malaysia, has many types of applications in various industries. In this study, oil palm frond (OPF) was liquefied with 1-butyl-3-methylimidazole hydrogen sulfate ([BMIM][HSO4]) ionic liquid (IL) at optimum conditions. The liquefied OPF-ionic liquid (LOPF-IL) was mixed with furfural at a ratio of 0.8 (w/w), water-to-feedstock ratio of 0.125 (w/w), and sulfuric acid loading of 0.5 mL at 100 °C for 1 h to form a gel. Carbon cryogel liquefied oil palm frond (CCOPF) was prepared using a freeze-dryer followed by calcination. CCOPF was further characterized using N2 sorption, NH3-TPD, TGA, XRD, FTIR, and FESEM to determine its physical and chemical properties. The thermally stable CCOPF exhibited a large total surface area (578 m2/g) and high total acidity (17.6 mmol/g). Next, CCOPF was tested for levulinic acid catalytic esterification by varying the parameters including ethanol-to-levulinic acid molar ratio, catalyst loading, and reaction time at 78 °C. At the optimum conditions, the conversion of levulinic acid and ethyl levulinate yield was 70.9 and 71.7 mol%, respectively. CCOPF was reusable up to five runs with no significant conversion drop. Accordingly, CCOPF is conferred as a potential biomass-derived acid catalyst for ethyl levulinate production.

Graphical Abstract



Oil palm frond Biomass Liquefaction 1-Butyl-3-methylimidazole hydrogen sulfate Carbon cryogel Ethyl levulinate 



The authors would like to acknowledge the Ministry of Higher Education (MOHE), Malaysia and Universiti Teknologi Malaysia (UTM) for research financial support under Fundamental Research Grant schemes (vote 4F160), Research University Grant (vote 19H95), and Professional Development Research University for Post-Doctoral Fellowship (vote 04E51).

Supplementary material

12155_2019_9977_MOESM1_ESM.docx (762 kb)
ESM 1 (DOCX 762 kb)


  1. 1.
    Akhtar J, Kuang SK, Amin NS (2010) Liquefaction of empty palm fruit bunch (EPFB) in alkaline hot compressed water. Renew Energy 35(6):1220–1227CrossRefGoogle Scholar
  2. 2.
    Tymchyshyn M, Xu C (2010) Liquefaction of bio-mass in hot-compressed water for the production of phenolic compounds. Bioresour Technol 101(7):2483–2490CrossRefPubMedGoogle Scholar
  3. 3.
    de Caprariis B, De Filippis P, Petrullo A, Scarsella M (2017) Hydrothermal liquefaction of biomass: influence of temperature and biomass composition on the bio-oil production. Fuel 208:618–625CrossRefGoogle Scholar
  4. 4.
    Fushimi C, Yazaki M, Tomita R (2018) Reactivity of solid residue from hydrothermal liquefaction of diatom in oxidizing atmosphere. J Taiwan Inst Chem Eng 90:68–78CrossRefGoogle Scholar
  5. 5.
    Ahmadzadeh A, Zakaria S, Rashid R (2009) Liquefaction of oil palm empty fruit bunch (EFB) into phenol and characterization of phenolated EFB resin. Ind Crop Prod 30(1):54–58CrossRefGoogle Scholar
  6. 6.
    Roslan R, Zakaria S, Chia CH, Boehm R, Laborie M-P (2014) Physico-mechanical properties of resol phenolic adhesives derived from liquefaction of oil palm empty fruit bunch fibres. Ind Crop Prod 62:119–124CrossRefGoogle Scholar
  7. 7.
    Alma MH, Basturk MA (2006) Liquefaction of grapevine cane (Vitis vinisera L.) waste and its application to phenol–formaldehyde type adhesive. Ind Crop Prod 24(2):171–176CrossRefGoogle Scholar
  8. 8.
    Tao L, Huang Y, Zheng Y, Yang X, Liu C, Di M, Larpkiattaworn S, Nimlos MR, Zheng Z (2018) Porous carbon nanofiber derived from a waste biomass as anode material in lithium-ion batteries. J Taiwan Inst Chem Eng 95:217–226Google Scholar
  9. 9.
    Sidik DAB, Ngadi N, Amin NAS (2013) Optimization of lignin production from empty fruit bunch via liquefaction with ionic liquid. Bioresour Technol 135:690–696CrossRefPubMedGoogle Scholar
  10. 10.
    Clough MT, Geyer K, Hunt PA, Son S, Vagt U, Welton T (2015) Ionic liquids: not always innocent solvents for cellulose. Green Chem 17(1):231–243CrossRefGoogle Scholar
  11. 11.
    Hou Q, Ju M, Li W, Liu L, Chen Y, Yang Q (2017) Pretreatment of lignocellulosic biomass with ionic liquids and ionic liquid-based solvent systems. Molecules 22(3):490CrossRefGoogle Scholar
  12. 12.
    da Costa Lopes AM, João KG, Morais ARC, Bogel-Łukasik E, Bogel-Łukasik R (2013) Ionic liquids as a tool for lignocellulosic biomass fractionation. Sustain Chem Process 1(1):3CrossRefGoogle Scholar
  13. 13.
    Brandt A, Ray MJ, To TQ, Leak DJ, Murphy RJ, Welton T (2011) Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures. Green Chem 13(9):2489–2499CrossRefGoogle Scholar
  14. 14.
    Zainol MM, Amin NAS, Asmadi M (2015) Synthesis and characterization of carbon cryogel microspheres from lignin-furfural mixtures for biodiesel production. Bioresour Technol 190:44–50CrossRefPubMedGoogle Scholar
  15. 15.
    Zainol MM, Amin NAS, Asmadi M (2017) Effects of thermal treatment on carbon cryogel preparation for catalytic esterification of levulinic acid to ethyl levulinate. Fuel Process Technol 167:431–441CrossRefGoogle Scholar
  16. 16.
    Kraiwattanawong K, Mukai SR, Tamon H, Lothongkum AW (2007) Preparation of carbon cryogels from wattle tannin and furfural. Microporous Mesoporous Mater 98(1–3):258–266CrossRefGoogle Scholar
  17. 17.
    Kubisa P (2009) Ionic liquids as solvents for polymerization processes—progress and challenges. Prog Polym Sci 34(12):1333–1347CrossRefGoogle Scholar
  18. 18.
    Guo L-Y, Zhang B, Wang Z-M, Ma X-Y, Huang P-C (2015) Preparation of phenolic resin composites with functional ionic liquids and their liquefaction product of wood powder. Acta Polym Sin (5):556–563Google Scholar
  19. 19.
    Zainol MM, Asmadi M, Amin N, Ahmad K (2016) Carbon cryogel microsphere for ethyl levulinate production: effect of carbonization temperature and time. J Eng Sci Technol Spec Issue SOMCHE 2015:108–121Google Scholar
  20. 20.
    Zainol MM, Amin NAS, Asmadi M (2019) Kinetics and thermodynamic analysis of levulinic acid esterification using lignin-furfural carbon cryogel catalyst. Renew Energy 130:547–557CrossRefGoogle Scholar
  21. 21.
    Varkolu M, Moodley V, Potwana FSW, Jonnalagadda SB, van Zyl WE (2016) Esterification of levulinic acid with ethanol over bio-glycerol derived carbon–sulfonic-acid. React Kinet Mech Catal:1–12Google Scholar
  22. 22.
    Pileidis FD, Tabassum M, Coutts S, Titirici M-M (2014) Esterification of levulinic acid into ethyl levulinate catalysed by sulfonated hydrothermal carbons. Chin J Catal 35(6):929–936CrossRefGoogle Scholar
  23. 23.
    Li N, Jiang S, Liu Z-Y, Guan X-X, Zheng X-C (2019) Preparation and catalytic performance of loofah sponge-derived carbon sulfonic acid for the conversion of levulinic acid to ethyl levulinate. Catal Commun 121:11–14CrossRefGoogle Scholar
  24. 24.
    Song D, An S, Lu B, Guo Y, Leng J (2015) Arylsulfonic acid functionalized hollow mesoporous carbon spheres for efficient conversion of levulinic acid or furfuryl alcohol to ethyl levulinate. Appl Catal B Environ 179:445–457CrossRefGoogle Scholar
  25. 25.
    Ramli NAS, Sivasubramaniam D, Amin NAS (2017) Esterification of levulinic acid using ZrO2-supported phosphotungstic acid catalyst for ethyl levulinate production. BioEnergy Res 10(4):1105–1116CrossRefGoogle Scholar
  26. 26.
    Kong X, Wu S, Li X, Liu J (2016) Efficient conversion of levulinic acid to ethyl levulinate over a silicotungstic-acid-modified commercially silica-gel sphere catalyst. Energy Fuel 30(8):6500–6504CrossRefGoogle Scholar
  27. 27.
    Ramli NAS, Amin NAS (2016) Optimization of biomass conversion to levulinic acid in acidic ionic liquid and upgrading of levulinic acid to ethyl levulinate. BioEnergy Res:1–14Google Scholar
  28. 28.
    Amarasekara AS, Wiredu B (2014) Acidic ionic liquid catalyzed one-pot conversion of cellulose to ethyl levulinate and levulinic acid in ethanol-water solvent system. BioEnergy Res 7(4):1237–1243CrossRefGoogle Scholar
  29. 29.
    Pasquale G, Vázquez P, Romanelli G, Baronetti G (2012) Catalytic upgrading of levulinic acid to ethyl levulinate using reusable silica-included Wells-Dawson heteropolyacid as catalyst. Catal Commun 18:115–120CrossRefGoogle Scholar
  30. 30.
    Nandiwale KY, Sonar SK, Niphadkar PS, Joshi PN, Deshpande SS, Patil VS, Bokade VV (2013) Catalytic upgrading of renewable levulinic acid to ethyl levulinate biodiesel using dodecatungstophosphoric acid supported on desilicated H-ZSM-5 as catalyst. Appl Catal A Gen 460:90–98CrossRefGoogle Scholar
  31. 31.
    Badgujar KC, Bhanage BM (2015) Thermo-chemical energy assessment for production of energy-rich fuel additive compounds by using levulinic acid and immobilized lipase. Fuel Process Technol 138:139–146CrossRefGoogle Scholar
  32. 32.
    Chen Y, Zhang X, Dong M, Wu Y, Zheng G, Huang J, Guan X, Zheng X (2016) MCM-41 immobilized 12-silicotungstic acid mesoporous materials: structural and catalytic properties for esterification of levulinic acid and oleic acid. J Taiwan Inst Chem Eng 61:147–155CrossRefGoogle Scholar
  33. 33.
    Ding H, Ye W, Wang Y, Wang X, Li L, Liu D, Gui J, Song C, Ji N (2018) Process intensification of transesterification for biodiesel production from palm oil: microwave irradiation on transesterification reaction catalyzed by acidic imidazolium ionic liquids. Energy 144:957–967CrossRefGoogle Scholar
  34. 34.
    Nongbe MC, Ekou T, Ekou L, Yao KB, Le Grognec E, Felpin F-X (2017) Biodiesel production from palm oil using sulfonated graphene catalyst. Renew Energy 106:135–141CrossRefGoogle Scholar
  35. 35.
    Yokoyama S, Matsumura Y (2008) The Asian biomass handbook: a guide for biomass production and utilization. In: Yokoyama S, Matsumura Y (eds)Google Scholar
  36. 36.
    Poljanšek I, Krajnc M (2005) Characterization of phenol-formaldehyde prepolymer resins by in line FT-IR spectroscopy. Acta Chim Slov 52:238–244Google Scholar
  37. 37.
    Panneerselvam P, Morad N, Tan KA (2011) Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution. J Hazard Mater 186(1):160–168CrossRefPubMedGoogle Scholar
  38. 38.
    Dharaskar SA, Wasewar KL, Varma MN, Shende DZ, Yoo C (2016) Synthesis, characterization and application of 1-butyl-3-methylimidazolium tetrafluoroborate for extractive desulfurization of liquid fuel. Arab J Chem 9(4):578–587CrossRefGoogle Scholar
  39. 39.
    Dawodu FA, Ayodele O, Xin J, Zhang S, Yan D (2014) Effective conversion of non-edible oil with high free fatty acid into biodiesel by sulphonated carbon catalyst. Appl Energy 114:819–826CrossRefGoogle Scholar
  40. 40.
    Hara M (2010) Biodiesel production by amorphous carbon bearing SO3H, COOH and phenolic OH groups, a solid Brønsted acid catalyst. Top Catal 53(11–12):805–810CrossRefGoogle Scholar
  41. 41.
    Zainol MM, Asmadi M, Amin NAS (2014) Impregnation of magnetic particles on oil palm shell activated carbon for removal of heavy metal ions from aqueous solution. Jurnal Teknologi 72(1):7–11Google Scholar
  42. 42.
    Singare PU, Lokhande RS, Madyal RS (2011) Thermal degradation studies of some strongly acidic cation exchange resins. Open J Phys Chem 1(2):45–54CrossRefGoogle Scholar
  43. 43.
    Zhang Y, Yuan Z, Mahmood N, Huang S, Xu C (2016) Sustainable bio-phenol-hydroxymethylfurfural resins using phenolated de-polymerized hydrolysis lignin and their application in bio-composites. Ind Crop Prod 79:84–90CrossRefGoogle Scholar
  44. 44.
    Urdl K, Weiss S, Karpa A, Perić M, Zikulnig-Rusch E, Brecht M, Kandelbauer A, Müller U, Kern W (2018) Furan-functionalised melamine-formaldehyde particles performing Diels-Alder reactions. Eur Polym J 108:225–234CrossRefGoogle Scholar
  45. 45.
    Okamura M, Takagaki A, Toda M, Kondo JN, Domen K, Tatsumi T, Hara M, Hayashi S (2006) Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon. Chem Mater 18(13):3039–3045CrossRefGoogle Scholar
  46. 46.
    Zong M-H, Duan Z-Q, Lou W-Y, Smith TJ, Wu H (2007) Preparation of a sugar catalyst and its use for highly efficient production of biodiesel. Green Chem 9(5):434–437CrossRefGoogle Scholar
  47. 47.
    Tsubouchi N, Xu C, Ohtsuka Y (2003) Carbon crystallization during high-temperature pyrolysis of coals and the enhancement by calcium. Energy Fuel 17(5):1119–1125CrossRefGoogle Scholar
  48. 48.
    Maheria KC, Kozinski J, Dalai A (2013) Esterification of levulinic acid to n-butyl levulinate over various acidic zeolites. Catal Lett 143(11):1220–1225CrossRefGoogle Scholar
  49. 49.
    Fernandes D, Rocha A, Mai E, Mota CJ, da Silva VT (2012) Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts. Appl Catal A Gen 425:199–204CrossRefGoogle Scholar
  50. 50.
    Enumula SS, Gurram VRB, Chada RR, Burri DR, Kamaraju SRR (2017) Clean synthesis of alkyl levulinates from levulinic acid over one pot synthesized WO3-SBA-16 catalyst. J Mol Catal A Chem 426 (Part A:30–38CrossRefGoogle Scholar
  51. 51.
    Unlu D, Ilgen O, Hilmioglu ND (2016) Biodiesel additive ethyl levulinate synthesis by catalytic membrane: SO4 −2/ZrO2 loaded hydroxyethyl cellulose. Chem Eng J 302:260–268CrossRefGoogle Scholar
  52. 52.
    Yan K, Wu G, Wen J, Chen A (2013) One-step synthesis of mesoporous H4SiW12O40-SiO2 catalysts for the production of methyl and ethyl levulinate biodiesel. Catal Commun 34:58–63CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemical Reaction Engineering Group (CREG), School of Chemical and Energy Engineering, Faculty of EngineeringUniversiti Teknologi MalaysiaJohor BahruMalaysia
  2. 2.Advanced Oleochemical Technology DivisionMalaysian Palm Oil BoardKajangMalaysia

Personalised recommendations