BioEnergy Research

, Volume 12, Issue 1, pp 158–167 | Cite as

Energy Integration of Biogas Production in an Integrated 1G2G Sugarcane Biorefinery: Modeling and Simulation

  • Renata Piacentini Rodriguez
  • Carolina Manochio
  • Bruna de Souza MoraesEmail author


The integration of the first and second generation (1G2G) ethanol production promotes the increase of biofuel productivity per hectare of planted sugarcane, as well as the main liquid waste stream: vinasse, derived from ethanol distillation. As a sustainable way for it disposal, biogas production from anaerobic digestion (AD) promotes environmental suitability while enabling bioenergy generation. This work evaluated the potential energy generated from AD applied to vinasse within the context of an integrated 1G2G sugarcane biorefinery. Data from a literature survey based the scenario modeling and assessment, including economic and environmental indicators to compare the studied alternatives. AD allowed at least 68% increase of released bagasse for 2G ethanol production compared to 2G base scenario, being able to even double 2G ethanol productivity to 30 L t−1 cane. Organic matter removal efficiency of vinasse AD played an important role in 2G ethanol production so that higher the efficiency, larger the fraction of bagasse released for ethanol production. Economic indicators showed the unviability of 1G2G sugarcane mill including AD unit when considering the current technologies for 2G ethanol production in view of their high operational costs; however, with the envisaged technologies for 2025, the internal rate of return (IRR) of 14.3 and 17% was achieved, when considering conservative and optimistic data for vinasse AD efficiency, respectively. The results evidenced the importance of investment in R&D especially in 2G ethanol production but also in the AD of vinasse to reach the viability of this business.


1G2G ethanol Vinasse Anaerobic digestion Environmental indicators Economic assessment 



The authors would like to thank Prof. Gustavo do Amaral Valdiviesso for the support on modeling and simulation tools.

Funding Information

This work was supported by projects FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) proc. 2016/16438-3 and FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais) proc. TEC-APQ-02813-16.


  1. 1.
    Clark JH, Luque R, Matharu AS (2012) Green chemistry, biofuels, and biorefinery. Annu Rev Chem Biomol Eng 3:183–207. CrossRefGoogle Scholar
  2. 2.
    Bonomi A, Cavallet O, da Cunha MP, Lima MAP (2015) Virtual biorefinery: an optimization strategy for renewable carbon valorization. In: 1st ed. Springer, p 285Google Scholar
  3. 3.
    Cortez LAB (2010) Sugarcane bioethanol: R&D for productivity and sustainability, 1st edn. Edgard Blücher Ltda, São PauloGoogle Scholar
  4. 4.
    Hamelinck CN, Van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410. CrossRefGoogle Scholar
  5. 5.
    Dias MOS, Junqueira TL, Cavalett O, Cunha MP, Jesus CDF, Rossell CEV, Maciel Filho R, Bonomi A (2012) Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Bioresour Technol 103:152–161. CrossRefGoogle Scholar
  6. 6.
    Jaiswal D, De Souza AP, Larsen S et al (2017) Brazilian sugarcane ethanol as an expandable green alternative to crude oil use. Nat Clim Chang 7:788–792. CrossRefGoogle Scholar
  7. 7.
    Moraes BS, Zaiat M, Bonomi A (2015) Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: challenges and perspectives. Renew Sust Energ Rev 44:888–903. CrossRefGoogle Scholar
  8. 8.
    Wilkie AC, Riedesel KJ, Owens JM (2000) Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass Bioenergy 19:63–102. CrossRefGoogle Scholar
  9. 9.
    de Oliveira BG, Nunes Carvalho JL, Pellegrino Cerri CE et al (2015) Greenhouse gas emissions from sugarcane vinasse transportation by open channel: a case study in Brazil. J Clean Prod 94:102–107. CrossRefGoogle Scholar
  10. 10.
    Moraes BS, Petersen SO, Zaiat M, Sommer SG, Triolo JM (2016) Reduction in greenhouse gas emissions from vinasse through anaerobic digestion. Appl Energy 189:21–30. CrossRefGoogle Scholar
  11. 11.
    Groposo Silveira CJ, Melo Santa Aanna LM, de Machado Castro A, et al (2012) Method for producing energy-rich gases from lignocellulosic material streams. International Patent Application No. WO 2012/003556 A1Google Scholar
  12. 12.
    Leite RC, De C, Leal MR (2007) O biocombustível no BrasilGoogle Scholar
  13. 13.
    Furlan FF, Filho RT, Pinto FH et al (2013) Bioelectricity versus bioethanol from sugarcane bagasse: is it worth being flexible? Biotechnol Biofuels 6:142. CrossRefGoogle Scholar
  14. 14.
    Dias MOS, Junqueira TL, Jesus CDF, Rossell CEV, Maciel Filho R, Bonomi A (2012) Improving second generation ethanol production through optimization of first generation production process from sugarcane. Energy 43:246–252. CrossRefGoogle Scholar
  15. 15.
    Moraes BS, Junqueira TL, Pavanello LG, Cavalett O, Mantelatto PE, Bonomi A, Zaiat M (2014) Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: profit or expense? Appl Energy 113:825–835. CrossRefGoogle Scholar
  16. 16.
    Junqueira TL, Moraes BS, Gouveia VLR et al (2015) Use of VSB to plan research programs and public policies. green energy and technology. In: Bonomi A, Cavalett O, Pereira da Cunha M, Lima M (eds) Virtual biorefinery: an optimization strategy for renewable carbon valorization. Springer, CampinasGoogle Scholar
  17. 17.
    NovaCana (2015) Implantação da hidrólise nas usinas de etanol e açúcar (Implantation of hydrolysis in ethanol and sugar mills). NovaCana database: Accessed 15 Jan 2015
  18. 18.
    Ferraz Júnior ADN, Koyama MH, de Araújo Júnior MM, Zaiat M (2016) Thermophilic anaerobic digestion of raw sugarcane vinasse. Renew Energy 89:245–252CrossRefGoogle Scholar
  19. 19.
    Bonomi A, Mariano AP, de Jesus CDF, et al (2011) The Virtual Sugarcane Biorefinery (VSB)Google Scholar
  20. 20.
    Fuess LT, Kiyuna LSM, Ferraz ADN et al (2017) Thermophilic two-phase anaerobic digestion using an innovative fixed-bed reactor for enhanced organic matter removal and bioenergy recovery from sugarcane vinasse. Appl Energy 189:480–491. CrossRefGoogle Scholar
  21. 21.
    Fuess LT, Klein BC, Chagas MF, Alves Ferreira Rezende MC, Garcia ML, Bonomi A, Zaiat M (2018) Diversifying the technological strategies for recovering bioenergy from the two-phase anaerobic digestion of sugarcane vinasse: an integrated techno-economic and environmental approach. Renew Energy 122:674–687. CrossRefGoogle Scholar
  22. 22.
    IPCC (2014) Climate change 2014: mitigation of climate change. Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate ChangeGoogle Scholar
  23. 23.
    ANEEL (2015) Brazilian Electricity Regulatory Agency (Agência Nacional de Energia Elétrica).
  24. 24.
    CEPEA (2015) Indicador Semanal Etanol Anidro. In: Cent. Estud. Avançados em Econ. Apl.
  25. 25.
    BM&F_BOVESPA (2012) Leilão de Venda de Reduções Certificadas de Emissão. Edital no. 1/2012 (12/06/2012)Google Scholar
  26. 26.
    Khatiwada D, Leduc S, Silveira S, McCallum I (2016) Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil. Renew Energy 85:371–386. CrossRefGoogle Scholar
  27. 27.
    Macrelli S, Mogensen J, Zacchi G (2012) Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process. Biotechnol Biofuels 5:22. CrossRefGoogle Scholar
  28. 28.
    Olivier JGJ (PBL), Janssens-Maenhout G (EC-J) Muntean M (EC-J), Peters JAHW (PBL) (2016) Trends in global CO2 emissions: 2016 report. PBL Netherlands Environ Assess Agency Eur Comm Jt Res CentGoogle Scholar
  29. 29.
    dos Santos LV, de Barros Grassi MC, Gallardo JCM, Pirolla RAS, Calderón LL, de Carvalho-Netto OV, Parreiras LS, Camargo ELO, Drezza AL, Missawa SK, Teixeira GS, Lunardi I, Bressiani J, Pereira GAG (2016) Second-generation ethanol: the need is becoming a reality. Ind Biotechnol 12:40–57. CrossRefGoogle Scholar
  30. 30.
    BM&F_BOVESPA (2008) Leilão de Venda de Reduções Certificadas de Emissão. Edital no. 001/2008 (12/06/2008)Google Scholar
  31. 31.
    Junqueira TL, Chagas MF, Gouveia VLR, Rezende MCAF, Watanabe MDB, Jesus CDF, Cavalett O, Milanez AY, Bonomi A (2017) Techno-economic analysis and climate change impacts of sugarcane biorefineries considering different time horizons. Biotechnol Biofuels 10:50. CrossRefGoogle Scholar
  32. 32.
    Chen X, Nuñez HM, Xu B (2015) Explaining the reductions in Brazilian sugarcane ethanol production costs: importance of technological change. GCB Bioenergy 7:468–478. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Ciência e TecnologiaUniversidade Federal de Alfenas—UNIFAL/MGPoços de CaldasBrazil
  2. 2.Elfusa Geral de Eletrofusão LTDASão João da Boa VistaBrazil
  3. 3.Núcleo Interdisciplinar de Planejamento Energético (NIPE)Universidade Estadual de Campinas–Unicamp/SPCampinasBrazil

Personalised recommendations