Skip to main content

Recent Developments in Commercial Processes for Refining Bio-Feedstocks to Renewable Diesel

Abstract

The process technologies for conversion of bio-feedstocks such as vegetable oils, animal fats, and algal oil into renewable diesel have been developed and commercialized during the last decade. The global annual production capacity of renewable diesel is approaching to 5.5 million tons per year. The refining process generally includes pretreatment of the renewable feedstock to remove impurities, hydroprocessing and isomerization to produce hydrocarbons, and distillation to produce a fuel suitable for use as diesel or jet fuel. This article reviews recent development in the commercial production of renewable diesel, pretreatment technologies, chemistry of deoxygenation and cracking of triglycerides, the effect of reaction parameters on the relative activities of different reaction pathways, catalyst development, and the technical details of commercial processes for refining bio-feedstocks.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Centi G, van Santen RA (2008) Catalysis for renewables: from feedstock to energy production, John Wiley & Sons. DOI: https://doi.org/10.1002/9783527621118

  2. Zhang B, Wang Y (2013) Biomass processing, conversion and biorefinery. Nova Science Publishers, Inc., New York

    Google Scholar 

  3. Neste (2016) Neste Renewable Diesel Handbook. https://www.neste.com/sites/default/files/attachments/neste_renewable_diesel_handbook.pdf. (Accessed on 5/10/2018)

  4. Zhang, B., and Seddon, D. (2018). Hydroprocessing catalysts and processes: the challenges for biofuels production, World Scientific Publishing, Singapore

  5. Kim D-S, Hanifzadeh M, Kumar A (2017) Trend of biodiesel feedstock and its impact on biodiesel emission characteristics. Environ Prog Sustain Energy 37:7–19. https://doi.org/10.1002/ep.12800

    Article  CAS  Google Scholar 

  6. Chen J, Li Q, Chang C, Bai J, Liu L, Fang S, Li H (2017) Techno-economic analysis of biodiesel production from microalgae: a review. Trends Renewable Energy 3:141–152

    Article  Google Scholar 

  7. Revellame ED, Hernandez R, French W, Holmes WE, Benson TJ, Pham PJ, Forks A, Callahan Ii R (2012) Lipid storage compounds in raw activated sludge microorganisms for biofuels and oleochemicals production. RSC Adv 2(5):2015–2031

    Article  CAS  Google Scholar 

  8. Karleskind A, Wolff JP, Association française pour l'étude des corps gras (1996) Oils and fats manual: a comprehensive treatise: properties, Production, Applications, Intercept

  9. ASTM D6751 (2015). Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels, ASTM International, West Conshohocken, PA. DOI: https://doi.org/10.1520/D6751-15A

  10. Yang C, Zhang B, Cui C, Wu J, Ding Y, Wu Y (2016) Standards and protocols for characterization of algae-based biofuels. Trends Renewable Energy 2(2):56–60

    Article  Google Scholar 

  11. Dijkstra AJ (2010). Edible oil processing: introduction to degumming. Edible oil processing: Introduction to Degumming

  12. Campbell SJ, Nakayama N, Unger EH (1983) Chemical degumming of crude vegetable oils. CA1157883 A

  13. Havlik P, Abhari R, Roth G, Tomlinson HL (2013) Method for the removal of phosphorus. US8575409 B2

  14. Yang C, Zhang B, Moen J, Hennessy K, Liu Y, Lin X, Wan Y, Lei H, Chen P, Ruan R (2010) Fractionation and characterization of bio-oil from microwave-assisted pyrolysis of corn Stover. Int J Agric Biol Eng 3(3):54–61

    CAS  Google Scholar 

  15. Ramli MR, Siew WL, Ibrahim NA, Hussein R, Kuntom A, Razak ARA, Nesaretnam K (2011) Effects of degumming and bleaching on 3-MCPD esters formation during physical refining. J Am Oil Chem Soc 88(11):1839–1844

    Article  CAS  Google Scholar 

  16. Oil Palm Knowledge Base (2015) Physical refining—degumming. https://oilpalmblog.wordpress.com/2015/12/26/physical-refining-degumming/

  17. Oil Mill Machinery (2012) Palm oil refinery. http://www.oilmillmachinery.net/palm-oil-refinery.html. (Accessed on 5/10/2018)

  18. Mag TK, Reid MP (1980) Continuous process for contacting of triglyceride oils with _an acid. US4240972 A

  19. Neste Oil (2013) NExBTL® Renewable Diesel Singapore Plant: TALLOW PATHWAY DESCRIPTION. https://www.arb.ca.gov/fuels/lcfs/2a2b/apps/neste-aus-rpt-031513.pdf

  20. Renewable Energy Group (2017) Bio-Synfining. http://www.regi.com/technologies/bio-synfining. (Accessed on 5/10/2018)

  21. Dandeu A, Coupard V, Chapus T (2016) Process for converting feeds derived from renewable sources with pre-treatment of feeds by hot dephosphatation. US9447334 B2

  22. Dos Anjos JS, De Araujo Gonzalez W, Lam YL, Frety R (1983) Catalytic decomposition of vegetable oil. Appl Catal 5(3):299–308

    Article  CAS  Google Scholar 

  23. Twaiq FA, Zabidi NAM, Bhatia S (1999) Catalytic conversion of palm oil to hydrocarbons: performance of various zeolite catalysts. Ind Eng Chem Res 38(9):3230–3237

    Article  CAS  Google Scholar 

  24. Revellame ED, Holmes WE, Benson TJ, Forks AL, French WT, Hernandez R (2012) Parametric study on the production of renewable fuels and chemicals from phospholipid-containing biomass. Top Catal 55(3):185–195

    Article  CAS  Google Scholar 

  25. Wojciechowski BW (1998) The reaction mechanism of catalytic cracking: quantifying activity, selectivity, and catalyst decay. Catal Rev 40(3):209–328

    Article  CAS  Google Scholar 

  26. Zhao C, Bruck T, Lercher JA (2013) Catalytic deoxygenation of microalgae oil to green hydrocarbons. Green Chem 15(7):1720–1739

    Article  CAS  Google Scholar 

  27. UPM (2017). Producing advanced biofuels. http://www.upmbiofuels.com/biofuel-production/advanced-biofuel-production/Pages/Default.aspx. (Accessed on 5/10/2018)

  28. Nousiainen J, Laumola H, Rissanen A, Kotoneva J, Ristolainen M (2015) Process and apparatus for purifying material of biological origin. EP2643442 B1

  29. Preem (2016) Preem Evolution Diesel. http://preem.se/en/in-english/investors/annual-overview-2016/sustainable-development/preem-evolution-fuels/preem-evolution-diesel/. (Accessed on 5/10/2018)

  30. Yang C, Li R, Cui C, Liu S, Qiu Q, Ding Y, Wu Y, Zhang B (2016) Catalytic hydroprocessing of microalgae-derived biofuels: a review. Green Chem 18(13):3684–3699

    Article  CAS  Google Scholar 

  31. Huber GW, O’Connor P, Corma A (2007) Processing biomass in conventional oil refineries: production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures. Appl Catal A Gen 329:120–129

    Article  CAS  Google Scholar 

  32. Kubička D, Kaluža L (2010) Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts. Appl Catal A Gen 372(2):199–208

    Article  CAS  Google Scholar 

  33. Popov S, Kumar S (2013) Renewable fuels via catalytic hydrodeoxygenation of lipid-based feedstocks. Biofuels 4(2):219–239

    Article  CAS  Google Scholar 

  34. Holmgren J, Gosling C, Marinangeli R, Marker T, Faraci G, Perego C (2007) New developments in renewable fuels offer more choices—vegetable oil-based diesel can offer better integration within crude-oil refineries for fuels blending. Hydrocarb Process, pp: 67–72

  35. Donnis B, Egeberg RG, Blom P, Knudsen KG (2009) Hydroprocessing of bio-oils and oxygenates to hydrocarbons. Understanding the reaction routes. Top Catal 52(3):229–240

    Article  CAS  Google Scholar 

  36. Krár M, Kovács S, Kalló D, Hancsók J (2010) Fuel purpose hydrotreating of sunflower oil on CoMo/Al2O3 catalyst. Bioresour Technol 101(23):9287–9293

    Article  PubMed  CAS  Google Scholar 

  37. da Rocha Filho GN, Brodzki D, Djéga-Mariadassou G (1993) Formation of alkanes, alkylcycloalkanes and alkylbenzenes during the catalytic hydrocracking of vegetable oils. Fuel 72(4):543–549

    Article  Google Scholar 

  38. Smejkal Q, Smejkalová L, Kubička D (2009) Thermodynamic balance in reaction system of total vegetable oil hydrogenation. Chem Eng J 146(1):155–160

    CAS  Google Scholar 

  39. Laurent E, Delmon B (1994) Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 catalysts: I. Catalytic reaction schemes. Appl Catal A Gen 109(1):77–96

    Article  CAS  Google Scholar 

  40. Bezergianni S, Dimitriadis A, Sfetsas T, Kalogianni A (2010) Hydrotreating of waste cooking oil for biodiesel production. Part II: effect of temperature on hydrocarbon composition. Bioresour Technol 101(19):7658–7660

    Article  PubMed  CAS  Google Scholar 

  41. Gusmão J, Brodzki D, Djéga-Mariadassou G, Frety R (1989) Utilization of vegetable oils as an alternative source for diesel-type fuel: hydrocracking on reduced Ni/SiO2 and sulphided Ni-Mo/γ-Al2O3. Catal Today 5(4):533–544

    Article  Google Scholar 

  42. Kim SK, Brand S, Lee H-s, Kim Y, Kim J (2013) Production of renewable diesel by hydrotreatment of soybean oil: effect of reaction parameters. Chem Eng J 228:114–123

    Article  CAS  Google Scholar 

  43. Hancsók J, Kasza T, Kovács S, Solymosi P, Holló A (2012) Production of bioparaffins by the catalytic hydrogenation of natural triglycerides. J Clean Prod 34:76–81

    Article  CAS  Google Scholar 

  44. Kovács S, Kasza T, Thernesz A, Horváth IW, Hancsók J (2011) Fuel production by hydrotreating of triglycerides on NiMo/Al2O3/F catalyst. Chem Eng J 176-177:237–243

    Article  CAS  Google Scholar 

  45. Šimáček P, Kubička D, Šebor G, Pospíšil M (2010) Fuel properties of hydroprocessed rapeseed oil. Fuel 89(3):611–615

    Article  CAS  Google Scholar 

  46. Qiu Q, Huang M, Zheng W, Xuan C, Wan Y, Zhang B, Luo Z, Lv W (2017) Impact of molar ratio of total metal ions to precipitant on YAG:Ce nanophosphors synthesized by reverse titration coprecipitation. Ceram Int 43(12):8730–8734

    Article  CAS  Google Scholar 

  47. Šimáček P, Kubička D, Šebor G, Pospíšil M (2009) Hydroprocessed rapeseed oil as a source of hydrocarbon-based biodiesel. Fuel 88(3):456–460

    Article  CAS  Google Scholar 

  48. Nava R, Pawelec B, Castaño P, Álvarez-Galván MC, Loricera CV, Fierro JLG (2009) Upgrading of bio-liquids on different mesoporous silica-supported CoMo catalysts. Appl Catal B Environ 92(1):154–167

    Article  CAS  Google Scholar 

  49. Şenol Oİ, Viljava TR, Krause AOI (2005) Hydrodeoxygenation of aliphatic esters on sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 catalyst: the effect of water. Catal Today 106(1):186–189

    Article  Google Scholar 

  50. Veriansyah B, Han JY, Kim SK, Hong S-A, Kim YJ, Lim JS, Shu Y-W, Oh S-G, Kim J (2012) Production of renewable diesel by hydroprocessing of soybean oil: effect of catalysts. Fuel 94:578–585

    Article  CAS  Google Scholar 

  51. Kim SK, Han JY, Lee H-s, Yum T, Kim Y, Kim J (2014) Production of renewable diesel via catalytic deoxygenation of natural triglycerides: comprehensive understanding of reaction intermediates and hydrocarbons. Appl Energy 116:199–205

    Article  CAS  Google Scholar 

  52. Snåre M, Kubičková I, Mäki-Arvela P, Eränen K, Murzin DY (2006) Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel. Ind Eng Chem Res 45(16):5708–5715

    Article  CAS  Google Scholar 

  53. Kubičková I, Snåre M, Eränen K, Mäki-Arvela P, Murzin DY (2005) Hydrocarbons for diesel fuel via decarboxylation of vegetable oils. Catal Today 106(1–4):197–200

    Article  CAS  Google Scholar 

  54. Kubička D, Šimáček P, Žilková N (2009) Transformation of vegetable oils into hydrocarbons over mesoporous-alumina-supported CoMo catalysts. Top Catal 52(1):161–168

    Article  CAS  Google Scholar 

  55. Kubička D, Bejblová M, Vlk J (2010) Conversion of vegetable oils into hydrocarbons over CoMo/MCM-41 catalysts. Top Catal 53(3):168–178

    Article  CAS  Google Scholar 

  56. Dufresne P (2007) Hydroprocessing catalysts regeneration and recycling. Appl Catal A Gen 322:67–75

    Article  CAS  Google Scholar 

  57. Corma A, Wojciechowski BW (1985) The chemistry of catalytic cracking. Catal Rev 27(1):29–150

    Article  CAS  Google Scholar 

  58. Corma A, Huber GW, Sauvanaud L, O'Connor P (2007) Processing biomass-derived oxygenates in the oil refinery: catalytic cracking (FCC) reaction pathways and role of catalyst. J Catal 247(2):307–327

    Article  CAS  Google Scholar 

  59. Corma A, Huber GW, Sauvanaud L, O'Connor P (2008) Biomass to chemicals: catalytic conversion of glycerol/water mixtures into acrolein, reaction network. J Catal 257(1):163–171

    Article  CAS  Google Scholar 

  60. Katikaneni SPR, Adjaye JD, Bakhshi NN (1995) Catalytic conversion of canola oil to fuels and chemicals over various cracking catalysts. Can J Chem Eng 73(4):484–497

    Article  CAS  Google Scholar 

  61. Katikaneni SPR, Adjaye JD, Bakhshi NN (1995) Performance of Aluminophosphate molecular sieve catalysts for the production of hydrocarbons from wood-derived and vegetable oils. Energy Fuel 9(6):1065–1078

    Article  CAS  Google Scholar 

  62. Ooi Y-S, Zakaria R, Mohamed AR, Bhatia S (2005) Catalytic conversion of fatty acids mixture to liquid fuel and chemicals over composite microporous/mesoporous catalysts. Energy Fuel 19(3):736–743

    Article  CAS  Google Scholar 

  63. Twaiq FAA, Mohamad AR, Bhatia S (2004) Performance of composite catalysts in palm oil cracking for the production of liquid fuels and chemicals. Fuel Process Technol 85(11):1283–1300

    Article  CAS  Google Scholar 

  64. Wang W-C, Thapaliya N, Campos A, Stikeleather LF, Roberts WL (2012) Hydrocarbon fuels from vegetable oils via hydrolysis and thermo-catalytic decarboxylation. Fuel 95:622–629

    Article  CAS  Google Scholar 

  65. Tanabe K, Hölderich WF (1999) Industrial application of solid acid–base catalysts. Appl Catal A Gen 181(2):399–434

    Article  CAS  Google Scholar 

  66. Yang C, Li R, Cui C, Wu J, Ding Y, Wu Y, Zhang B (2017) The pyrolysis of duckweed over a solid base catalyst: Py-GC/MS and TGA analysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39(2):177–183

    Article  CAS  Google Scholar 

  67. Benson TJ, Hernandez R, French WT, Alley EG, Holmes WE (2009) Elucidation of the catalytic cracking pathway for unsaturated mono-, di-, and triacylglycerides on solid acid catalysts. J Mol Catal A Chem 303(1):117–123

    Article  CAS  Google Scholar 

  68. McCormick R, Alleman T (2016) Renewable Diesel Fuel. https://cleancities.energy.gov/files/u/news_events/document/document_url/182/McCormick___Alleman_RD_Overview_2016_07_18.pdf

  69. Honeywell UOP (2017). Honeywell Green Diesel™. https://www.uop.com/processing-solutions/renewables/green-diesel/. (accessed on 5/10/2018)

  70. Diamond Green Diesel (2017) Welcome to Diamond Green Diesel. https://www.diamondgreendiesel.com/. (Accessed on 5/10/2018)

  71. UPM (2015) UPM Lappeenranta Biorefinery is in commercial production. http://www.upm.com/About-us/Newsroom/Releases/Pages/UPM-Lappeenranta-Biorefinery-is-in-commercial-production-001-Mon-12-Jan-2015-11-30.aspx. (Accessed on 5/10/2018)

  72. Cetane Energy LLC (2014). About Us. http://www.cetaneenergy.com/aboutus.html. (Accessed on 5/10/2018)

  73. Neste Oil (2017). Neste's renewable diesel celebrates 10 years of reducing emissions. https://www.neste.com/en/nestes-renewable-diesel-celebrates-10-years-reducing-emissions. (Accessed on 5/10/2018)

  74. Kotrba R (2015) Total to convert oil refinery to renewable diesel production. http://www.biodieselmagazine.com/articles/355201/total-to-convert-oil-refinery-to-renewable-diesel-production. (accessed on 5/10/2018)

  75. Honeywell UOP (2017) Honeywell Green Jet Fuel™. https://www.uop.com/processing-solutions/renewables/green-jet-fuel/. (Accessed on 5/10/2018)

  76. Abhari R, Havlik P (2011) Hydrodeoxygenation process. US8026401:B2

  77. Abhari R, Tomlinson HL, Roth G (2013) Biorenewable naphtha. US8558042 B2

  78. Abhari R, Tomlinson HL, Roth G (2013) Biorenewable naphtha composition and methods of making same. US8581013 B2

  79. Gudde NJ, Townsend JA (2007) Hydrogenation process. WO2007138254 A1

  80. Gudde NJ (2008) Hydrogenation process. WO2008040980 A1

  81. Aves R, Smith J (2013) Systems and methods of generating renewable diesel. US8563792 B2

  82. Perego C (2015) From biomass to advanced biofuel: the greendiesel case. http://www.sinchem.eu/wp-content/uploads/2015/01/15-Perego-ENI.pdf. (Accessed on 5/10/2018)

  83. Perego C, Sabatino LMF, Baldiraghi F, Faraci G (2013) Process for producing hydrocarbon fractions from mixtures of a biological origin. US8608812 B2

  84. Egeberg RG, Knudsen KG, Blom NJ, Hansen JA (2010) Hydroconversion process and catalyst. WO2010028717 A2

  85. Myllyoja J, Aalto P, Savolainen P, Purola VM, Alopaeus V, Grönqvist J (2007) Process for the manufacture of diesel range hydrocarbons. WO2007003709 A1

  86. Myllyoja J, Aalto P, Harlin E (2012). Process for the manufacture of diesel range hydrocarbons. US8278492 B2

  87. Jakkula J, Niemi V, Nikkonen J, Purola VM, Myllyoja J, Aalto P, Lehtonen J, Alopaeus V (2007). Process for producing a hydrocarbon component of biological origin. EP1396531 B1

  88. Chapus T, Dupassieux N (2011) Method of converting feedstocks coming from renewable sources into high-quality gas-oil fuel bases. US7880043 B2

  89. Renewable Energy Group (2014). Renewable Energy Group Completes Syntroleum Acquisition. https://www.regi.com/news/2014/06/03/renewable-energy-group-completes-syntroleum-acquisition. (Accessed on 5/10/2018)

  90. BP Oil International Limited (2008). Process for hydrogenation of carboxylic acids and derivatives to hydrocarbons. EP1911734 A1

  91. Gudde NJ, Townsend JA (2014) Process for hydrogenation of carboxylic acids and derivatives to hydrocarbons. US8742184 B2

  92. Gudde NJ (2013) Hydrogenation process. US8552234 B2

  93. Shabaker JW (2014) Renewable diesel refinery strategy. US8884086 B2

  94. Mayeur V, Vergel C, Morvan G, Mariette L, Hecquet M (2011) Process for hydrotreating a diesel fuel feedstock, hydrotreating unit for the implementation of the said process, and corresponding hydrorefining unit. US20110047862 A1

  95. Australian Institute of Petroleum (2007) Biofuels factsheet. http://www.aip.com.au/sites/default/files/download-files/2017-10/BioFuelFactSheet.pdf. (accessed on 5/10/2018)

  96. BP (2014). Closure of the Bulwer Island refinery – some facts. https://www.bp.com/content/dam/bp-country/en_au/media/media-releases/facts-about-closure-bulwer-island-refinery.pdf. (Accessed on 5/10/2018)

  97. Rispoli GF, Bellussi G, Calemma V, De A AR (2015) Biorefinery and method for revamping a conventional refinery of mineral oils into said biorefinery. WO2015181279 A1

  98. Honeywell UOP (2014) Honeywell UOP Green Fuels Technology Selected by Petrixo to Produce Renewable Jet Fuel and Diesel. https://www.uop.com/?press_release =honeywell-uop-green-fuels-technology-selected-by-petrixo-to-produce-renewable-jet-fuel-and-diesel. (accessed on 5/10/2018)

  99. Egeberg RG, Michaelsen NH, Skyum L (2011). Novel hydrotreating technology for production of green diesel. https://www.topsoe.com/sites/default/files/novel_hydrotreating_technology_for_production_of_green_diesel.ashx_.pdf. (Accessed on 5/10/2018)

  100. Knuuttila P, Kukkonen P, Hotanen U (2010) Method and apparatus for preparing fuel components from crude tall oil. WO2010097519 A2

  101. Kotrba R (2017) North Dakota oil refinery plans to co-process renewable diesel. http://www.biodieselmagazine.com/articles/2516083/north-dakota-oil-refinery-plans-to-co-process-renewable-diesel. (Accessed on 5/10/2018)

  102. Neste Oil (2015) NExBTL® Renewable Diesel Singapore Plant: NORTH AMERICAN TECHNICAL CORN OIL PATHWAYS DESCRIPTION. https://www.arb.ca.gov/fuels/lcfs/2a2b/apps/nes-co-rd-rpt-072915.pdf. (Accessed on 5/10/2018)

  103. Myllyoja J, Aalto P, Savolainen P, Purola VM, Alopaeus V, Gronqvist J (2007) Process for the manufacture of diesel range hydrocarbons. US20070010682 A1

  104. Myllyoja J, Aalto P, Savolainen P, Purola VM, Alopaeus V, Grönqvist J (2014) Process for the manufacture of diesel range hydrocarbons. US8859832 B2

  105. Koivusalmi E, Jakkula J (2008) Process for the manufacture of hydrocarbons. US7459597 B2

  106. Axens (2016) Vegan. http://www.axens.net/product/technology-licensing/11008/vegan.html. (Accessed on 5/10/2018)

Download references

Acknowledgments

This work was partially supported by the School of Chemical Engineering and Pharmacy at Wuhan Institute of Technology, Natural Science Foundation of Guangdong Province (2017A030310133) and the College of Chemistry and Environmental Engineering at Shenzhen University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changyan Yang or Qi Qiu.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Wu, J., Yang, C. et al. Recent Developments in Commercial Processes for Refining Bio-Feedstocks to Renewable Diesel. Bioenerg. Res. 11, 689–702 (2018). https://doi.org/10.1007/s12155-018-9927-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-018-9927-y

Keywords