BioEnergy Research

, Volume 11, Issue 3, pp 592–613 | Cite as

Current and Potential Biofuel Production from Plant Oils

  • Hanna Brännström
  • Hemanathan Kumar
  • Raimo Alén


Environmental concerns and depletion of fossil fuels along with government policies have led to the search for alternative fuels from various renewable and sustainable feedstocks. This review provides a critical overview of the chemical composition of common commercial plant oils, i.e., palm oil, olive oil, rapeseed oil, castor oil, WCO, and CTO and their recent trends toward potential biofuel production. Plant oils with a high energy content are primarily composed of triglycerides (generally > 95%), accompanied by diglycerides, monoglycerides, and free fatty acids. The heat content of plant oils is close to 90% for diesel fuels. The oxygen content is the most important difference in chemical composition between fossil oils and plant oils. Triglycerides can even be used directly in diesel engines. However, their high viscosity, low volatility, and poor cold flow properties can lead to engine problems. These problems require that plant oils need to be upgraded if they are to be used as a fuel in conventional diesel engines. Biodiesel, biooil, and renewable diesel are the three major biofuels obtained from plant oils. The main constraint associated with the production of biodiesel is the cost and sustainability of the feedstock. The renewable diesel obtained from crude tall oil is more sustainable than biofuels obtained from other feedstocks. The fuel properties of renewable diesel are similar to those of fossil fuels with reduced greenhouse gas emissions. In this review, the chemical composition of common commercial plant oils, i.e., palm oil, olive oil, rapeseed oil, castor oil, and tall oil, are presented. Both their major and minor components are discussed. Their compositions and fuel properties are compared to both fossil fuels and biofuels.


Plant oil Crude tall oil Biodiesel Biooil Renewable diesel 





5% biodiesel blend


100% biodiesel


Biomass to gas


Biomass to liquid


Crude tall oil


Crude tall oil soap


Lauric acid


Myristic acid


Palmitic acid


Stearic acid


Oleic acid


Linoleic acid


Linolenic acid


Erucic acid




No. 2 diesel fuel


Fatty acid


Fatty acid methyl ester


Free fatty acid


Higher heating value


Hydrotreated vegetable oil


Linoleic acid


Linoleic-linoleic-oleic acid


Linolenic acid


Linolenic-linoleic-oleic acid


Linolenic-oleic-oleic acid


Linoleic-oleic-oleic acid


Linoleic-oleic-palmitic acid




Oleic acid


Oleic-oleic acid


Oleic-oleic-oleic acid


Palmitic acid


Palmitic-linoleic-oleic acid


Palmitic-linoleic-palmitic acid


Palmitic-oleic acid


Palmitic-oleic-linoleic acid


Palmitic-oleic-oleic acid


Palmitic-oleic-palmitic acid


Palmitic-palmitic acid


Palmitic-palmitic-palmitic acid


Resin acid






Tall oil fatty acid


Technology readiness level


Waste cooking oil



The Jane and Aatos Erkko Foundation in Finland is gratefully acknowledged for the financial support.


  1. 1.
    Carlsson AS (2009) Plant oils as feedstock alternatives to petroleum—a short survey of potential oil crop platforms. Biochimie 91:665–670. PubMedCrossRefGoogle Scholar
  2. 2.
    Ma F, Hanna MA (1999) Biodiesel production: a review 1. Bioresour Technol 70:1–15. CrossRefGoogle Scholar
  3. 3.
    Piel WJ (2001) Transportation fuels of the future? Fuel Process Technol 71:167–179. CrossRefGoogle Scholar
  4. 4.
    Demirbas A (2003) Fuel conversional aspects of palm oil and sunflower oil. Energy Source 25:457–466. CrossRefGoogle Scholar
  5. 5.
    Fortes ICP, Baugh PJ (1994) Study of calcium soap pyrolysates derived from Macauba fruit (Acrocomia sclerocarpa M.). Derivatization and analysis by GC/MS and CI-MS. J Anal Appl Pyrolysis 29:153–167. CrossRefGoogle Scholar
  6. 6.
    Demirbas A (2008) Production of biodiesel from tall oil. Energy Sources Part A 30:1896–1902. CrossRefGoogle Scholar
  7. 7.
    Vijayaraghavan K, Hemanathan K (2009) Biodiesel production from freshwater algae. Energy Fuel 23:5448–5453. CrossRefGoogle Scholar
  8. 8.
    Dandik L, Aksoy HA (1998) Pyrolysis of used sunflower oil in the presence of sodium carbonate by using fractionating pyrolysis reactor. Fuel Process Technol 57:81–92. CrossRefGoogle Scholar
  9. 9.
    Russo D, Dassisti M, Lawlor V, Olabi AG (2012) State of the art of biofuels from pure plant oil. Renew Sustain Energ Rev 16:4056–4070. CrossRefGoogle Scholar
  10. 10.
    Knothe G, Dunn RO, Bagby MO (1997) Biodiesel: the use of vegetable oils and their derivatives as alternative diesel fuels. In: Fuels and chemicals from biomass, vol 666. ACS symposium series. American Chemical Society, pp 172–208.
  11. 11.
    Huber GW, Corma A (2007) Synergies between bio- and oil refineries for the production of fuels from biomass. Angew Chem Int Ed 46:7184–7201. CrossRefGoogle Scholar
  12. 12.
    Demirbas A (2008) Biodiesel: a realistic fuel alternative for diesel engines, vol 10. Springer-Verlag, LondonGoogle Scholar
  13. 13.
    Doll KM, Sharma BK, Suarez PAZ, Erhan SZ (2008) Comparing biofuels obtained from pyrolysis, of soybean oil or soapstock, with traditional soybean biodiesel: density, kinematic viscosity, and surface tensions. Energy Fuel 22:2061–2066. CrossRefGoogle Scholar
  14. 14.
    Sugami Y, Minami E, Saka S (2016) Renewable diesel production from rapeseed oil with hydrothermal hydrogenation and subsequent decarboxylation. Fuel 166:376–381. CrossRefGoogle Scholar
  15. 15.
    Knothe G (2010) Biodiesel and renewable diesel: a comparison. Prog Energy Combust Sci 36:364–373. CrossRefGoogle Scholar
  16. 16.
    Christopher LP, Kumar H, Zambare VP (2014) Enzymatic biodiesel: challenges and opportunities. Appl Energy 119:497–520.
  17. 17.
    Zhang Y, Dubé MA, McLean DD, Kates M (2003) Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour Technol 90:229–240. PubMedCrossRefGoogle Scholar
  18. 18.
    Niemi S, Vauhkonen V, Mannonen S, Ovaska T, Nilsson O, Sirviö K, Heikkilä S, Kiijärvi J (2016) Effects of wood-based renewable diesel fuel blends on the performance and emissions of a non-road diesel engine. Fuel 186:1–10. CrossRefGoogle Scholar
  19. 19.
    Kumar H (2016) Novel concepts on the recovery of by-products from alkaline pulping. Doctoral Thesis, University of Jyväskylä, Jyväskylä, FinlandGoogle Scholar
  20. 20.
    Anthonykutty JM, Linnekoski J, Harlin A, Laitinen A, Lehtonen J (2015) Catalytic upgrading of crude tall oil into a paraffin-rich liquid. Biomass Conv Bioref 5:149–159. CrossRefGoogle Scholar
  21. 21.
    Gunstone FD (2011) Production and trade of vegetable oils. In: Gunstone FD (ed) Vegetable oils in food technology: composition, properties and uses. Wiley-Blackwell, Oxford, pp 1–24CrossRefGoogle Scholar
  22. 22.
    Gunstone F (2004) The chemistry of fats and oils–sources, composition, properties and uses. CRC Press, New YorkGoogle Scholar
  23. 23.
    Hasenhuettl GL (1993) Fats and fatty oils. In: Kirk-Othmer encyclopedia of chemical technology, vol 10. 4 edn. Wiley, Hoboken, pp 252–287Google Scholar
  24. 24.
    Stoker SH (2001) Lipids. In: Organic and Biological Chemistry. 2 edn. Houghton Mifflin Company, Boston, pp 258–285Google Scholar
  25. 25.
    Lepri FG, Chaves ES, Vieira MA, Ribeiro AS, Curtius AJ, DeOliveira LCC, DeCampos RC (2011) Determination of trace elements in vegetable oils and biodiesel by atomic spectrometric techniques—a review. Appl Spectrosc Rev 46:175–206. CrossRefGoogle Scholar
  26. 26.
    Nnorom IC, Ewuzie U (2015) Comparative study of trace metal (Cd, Cr, Cu, Fe, K, Mg, Na, and Zn). Asian J Plant Sci Res 5:22–29Google Scholar
  27. 27.
    Sambanthamurthi R, Sundram K, Tan Y-A (2000) Chemistry and biochemistry of palm oil. Prog Lipid Res 39:507–558. PubMedCrossRefGoogle Scholar
  28. 28.
    Fox NJ, Stachowiak GW (2007) Vegetable oil-based lubricants—a review of oxidation. Tribol Int 40:1035–1046. CrossRefGoogle Scholar
  29. 29.
    Stoker HS (2006) General, organic, and biological chemistry, 4th edn. Houghton Mifflin Company, BostonGoogle Scholar
  30. 30.
    Scrimgeour C, Harwood J (2007) Fatty acid and lipid structure. In: Gunstone FD, Harwood JL, Dijkstra AJ (eds) The lipid handbook, 3rd edn. CRC Press, New York, pp 1–36Google Scholar
  31. 31.
    Pioch D, Vaitilingom G (2005) Palm oil and derivatives: fuels or potential fuels? Lipids 12:161–169. CrossRefGoogle Scholar
  32. 32.
    Choo YM, Ng MH, Ma AN, Chuah CH, Hashim MA (2005) Application of supercritical fluid chromatography in the quantitative analysis of minor components (carotenes, vitamin E, sterols, and squalene) from palm oil. Lipids 40:429–432. PubMedCrossRefGoogle Scholar
  33. 33.
    Boskou D (2011) Olive oil. In: Gunstone F (ed) Vegetable oils in food technology: composition, properties and uses. Wiley-Blackwell, Oxford, pp 243–272CrossRefGoogle Scholar
  34. 34.
    Salvador MD, Aranda F, Fregapane G (1998) Chemical composition of commercial cornicabra virgin olive oil from 1995/96 and 1996/97 crops. J Am Oil Chem Soc 75:1305–1311. CrossRefGoogle Scholar
  35. 35.
    Przybylski R (2011) Canola/rapeseed oil. In: Gunstone F (ed) Vegetable oils in food technology: composition, properties and uses. Wiley-Blackwell, Oxford, pp 107–136CrossRefGoogle Scholar
  36. 36.
    Karaosmanoğlu F, Akdağ A, Cigizoğlu KB (1997) Biodiesel from rapeseed oil of turkish origin as an alternative fuel. Appl Biochem Biotechnol 61:251–265. CrossRefGoogle Scholar
  37. 37.
    Lappi H, Alén R (2011) Pyrolysis of vegetable oil soaps—palm, olive, rapeseed and castor oils. J Anal Appl Pyrolysis 91:154–158. CrossRefGoogle Scholar
  38. 38.
    Lappi HE, Alén R (2011) Pyrolysis of crude tall oil-derived products. BioRes 6:5121–5138Google Scholar
  39. 39.
    Sundram K (2011) Palm oil: chemistry and nutrition updates. Homepage of Malaysian Palm Oil Board (MPOB) Accessed 02 Apr 2011
  40. 40.
    Lin SW (2011) Palm oil. In: Gunstone F (ed) Vegetable oils in food technology: composition, properties and uses. Wiley-Blackwell, Oxford, pp 25–58CrossRefGoogle Scholar
  41. 41.
    Karmakar A, Karmakar S, Mukherjee S (2010) Properties of various plants and animals feedstocks for biodiesel production. Bioresour Technol 101:7201–7210. PubMedCrossRefGoogle Scholar
  42. 42.
    Noor Lida HM, Sundram K, Siew W, Aminah A, Mamot S (2002) TAG composition and solid fat content of palm oil, sunflower oil, and palm kernel olein belends before and after chemical interesterification. J Am Oil Chem Soc 79:1137–1144. CrossRefGoogle Scholar
  43. 43.
    Gibon V, De Greyt W, Kellens M (2007) Palm oil refining. Eur J Lipid Sci Technol 109:315–335. CrossRefGoogle Scholar
  44. 44.
    Ogunniyi DS (2006) Castor oil: a vital industrial raw material. Bioresour Technol 97:1086–1091. PubMedCrossRefGoogle Scholar
  45. 45.
    Naughton FC (1993) Castor oil. In: Kirk-Othmer encyclopedia of chemical technology, vol 5, 4th edn. Wiley, New York, pp 301–317Google Scholar
  46. 46.
    Ramirez-Tortosa MC, Granados S, Quiles JL (2006) Chemical composition, types and characteristics of olive oil. In: Quiles JL, Ramirez-Tortosa CM, Yaqoob P (eds) Olive oil and health. CAB International, London, pp 45–62CrossRefGoogle Scholar
  47. 47.
    Jeong G-T, Park D-H (2006) Batch (one- and two-stage) production of biodiesel fuel from rapeseed oil. In: JD MM, Adney WS, Mielenz JR, Klasson KT (eds) Twenty-seventh symposium on biotechnology for fuels and chemicals. Humana Press, Totowa, pp 668–679. CrossRefGoogle Scholar
  48. 48.
    Jeong G-T, Park D-H, Kang C-H, Lee W-T, Sunwoo C-S, Yoon C-H, Choi B-C, Kim H-S, Kim S-W, Lee U-T (2004) Production of biodiesel fuel by transesterification of rapeseed oil. In: Finkelstein M, JD MM, Davison BH, Evans B (eds) Proceedings of the twenty-fifth symposium on biotechnology for fuels and chemicals held may 4–7, 2003, in Breckenridge, CO. Humana Press, Totowa, pp 747–758. CrossRefGoogle Scholar
  49. 49.
    Ratnayake W, Daun J (2004) Chemical composition of canola and rapeseed oils. In: Gunstone FD (ed) Rapeseed and canola oil. Production, processing, properties and uses. CRC Press LLC, Boca Raton, pp 37–78Google Scholar
  50. 50.
    Naughton FC (1974) Production, chemistry, and commercial applications of various chemicals from castor oil. J Am Oil Chem Soc 51:65–71. CrossRefGoogle Scholar
  51. 51.
    Scholz V, da Silva JN (2008) Prospects and risks of the use of castor oil as a fuel. Biomass Bioenergy 32:95–100. CrossRefGoogle Scholar
  52. 52.
    Lechner M, Reiter B, Lorbeer E (1999) Determination of tocopherols and sterols in vegetable oils by solid-phase extraction and subsequent capillary gas chromatographic analysis. J Chromatogr 857:231–238. CrossRefGoogle Scholar
  53. 53.
    Chakrabarti MH, Ali M (2009) Performance of compression ignition engine with indigenous castor oil bio diesel in Pakistan. NED Univ J Res 6:10–20Google Scholar
  54. 54.
    Shukla BD, Srivastava PK, Gupta RK (1992) Oil seeds processing technology. Central Institute of Agricultural Engineering, Bhopal, indiaGoogle Scholar
  55. 55.
    Dunford N (2008) Oil and oilseed processing I. Food Technology Fact Sheet, Robert M Kerr Food & Agricultural Products Center 158:1–4Google Scholar
  56. 56.
    Alén R (2000) Basic chemistry of wood delignification. In: Stenius P (ed) Forest products chemistry. Fapet Oy, Helsinki, pp 58–104Google Scholar
  57. 57.
    Gullichsen J, Lindeberg H (2000) Byproducts of chemical pulping. In: Gullichsen J, Fogelholm CJ (eds) Chemical Pulping, Paper Making Science and Technology. Fapet Oy, Helsinki, p 375Google Scholar
  58. 58.
    Soltes EJ, Zinkel DF (1989) Chemistry of rosin. In: Zinkel DF, Russell J (eds) Naval Stores: production, chemistry, utilization. Pulp Chemicals Association, New York, pp 261–320Google Scholar
  59. 59.
    Holmbom B (1977) Improved gas chromatographic analysis of fatty and resin acid mixtures with special reference to tall oil. J Am Oil Chem Soc 54:289–293. CrossRefGoogle Scholar
  60. 60.
    Holmbom B (1978) The behavior of resin acids during tall oil distillation. J Am Oil Chem Soc 55:876–880. CrossRefGoogle Scholar
  61. 61.
    Huibers DTA (1997) Tall oil. In: Kroschwitz J, Howe-Grant M (eds) Kirk-Othmer encyclopedia of chemical technology 4edn. Wiley, New York, pp 616–622Google Scholar
  62. 62.
    Holbom B, Avela E (1971) Studies on tall oil from pine and birch 1. Composition of fatty and resin acids in sulfate soaps and in crude tall oil. Acta Acad Aboensis B 31:1–14Google Scholar
  63. 63.
    Holmbom B, Avela E (1971) Studies on tall oil from pine and birch. Acta Acad Aboensis B 31:1–18Google Scholar
  64. 64.
    Altıparmak D, Keskin A, Koca A, Gürü M (2007) Alternative fuel properties of tall oil fatty acid methyl ester–diesel fuel blends. Bioresour Technol 98:241–246. PubMedCrossRefGoogle Scholar
  65. 65.
    Sharma RK, Bakhshi NN (1991) Upgrading of tall oil to fuels and chemicals over HZSM-5 catalyst using various diluents. Can J Chem Eng 69:1082–1086. CrossRefGoogle Scholar
  66. 66.
    Stigsson L, Naydenov V (2009) Conversion of crude tall oil to renewable feedstock for diesel range fuel compositions. WO Patent 2009131510 A1Google Scholar
  67. 67.
    Severson RF, Schuller WH, Lawrence RV (1972) Pyrolyses of certain resin acids at 800.deg. J Chem Eng Data 17:250–252. CrossRefGoogle Scholar
  68. 68.
    Kulkarni MG, Dalai AK (2006) Waste cooking oil an economical source for biodiesel: a review. Ind Eng Chem Res 45:2901–2913. CrossRefGoogle Scholar
  69. 69.
    Lam MK, Lee KT, Mohamed AR (2010) Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnol Adv 28:500–518. PubMedCrossRefGoogle Scholar
  70. 70.
    Sanli H, Canakci M, Alptekin E Characterization of waste frying oils obtained from different facilities. In: World Renewable Energy Congress-Sweden; 8–13 May; 2011; Linköping; Sweden, 2011. Linköping University Electronic Press, pp 479–485Google Scholar
  71. 71.
    Srivastava A, Prasad R (2000) Triglycerides-based diesel fuels. Renew Sustainable Energy Rev 4:111–133. CrossRefGoogle Scholar
  72. 72.
    Shrirame HY, Panwar N, Bamniya B (2011) Bio diesel from castor oil–a green energy option. Low Carbon Economy 2:1–6. CrossRefGoogle Scholar
  73. 73.
    Haga N (2004) Vegetable oils as fuel in diesel generating sets. Paper presented at the 10th International Cogeneration, Combined Cycle & Environment Conference and exhibitionGoogle Scholar
  74. 74.
    Esteban B, Riba J-R, Baquero G, Rius A, Puig R (2012) Temperature dependence of density and viscosity of vegetable oils. Biomass Bioenergy 42:164–171. CrossRefGoogle Scholar
  75. 75.
    Agarwal D, Agarwal AK (2007) Performance and emissions characteristics of Jatropha oil (preheated and blends) in a direct injection compression ignition engine. Appl Therm Eng 27:2314–2323. CrossRefGoogle Scholar
  76. 76.
    Eromosele CO, Paschal NH (2003) Characterization and viscosity parameters of seed oils from wild plants. Bioresour Technol 86:203–205. PubMedCrossRefGoogle Scholar
  77. 77.
    Yalcin H, Toker OS, Dogan M (2012) Effect of oil type and fatty acid composition on dynamic and steady shear rheology of vegetable oils. Journal of oleo science 61:181–187PubMedCrossRefGoogle Scholar
  78. 78.
    Hellier P, Ladommatos N, Yusaf T (2015) The influence of straight vegetable oil fatty acid composition on compression ignition combustion and emissions. Fuel 143:131–143. CrossRefGoogle Scholar
  79. 79.
    Knothe G, Steidley KR (2005) Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel 84:1059–1065. CrossRefGoogle Scholar
  80. 80.
    Demirbaş A (1998) Fuel properties and calculation of higher heating values of vegetable oils. Fuel 77:1117–1120. CrossRefGoogle Scholar
  81. 81.
    Mehta PS, Anand K (2009) Estimation of a lower heating value of vegetable oil and biodiesel fuel. Energy Fuel 23:3893–3898. CrossRefGoogle Scholar
  82. 82.
    Lujaji F, Bereczky A, Janosi L, Novak C, Mbarawa M (2010) Cetane number and thermal properties of vegetable oil, biodiesel, 1-butanol and diesel blends. J Therm Anal Calorim 102:1175–1181. CrossRefGoogle Scholar
  83. 83.
    Toscano G, Maldini E (2007) Analysis of the physical and chemical charactersistics of vegetable oils as fuel. 2007 38:9.
  84. 84.
    Coll R, Udas S, Jacoby WA (2001) Conversion of the rosin acid fraction of crude tall oil into fuels and chemicals. Energy Fuel 15:1166–1172. CrossRefGoogle Scholar
  85. 85.
    Lappi H (2012) Production of hydrocarbon-rich biofuels from extractives-derived materials. Doctoral Thesis, University of Jyväskylä, Jyväskylä, FinlandGoogle Scholar
  86. 86.
    Dorado MP, Ballesteros E, Mittelbach M, López FJ (2004) Kinetic parameters affecting the alkali-catalyzed transesterification process of used olive oil. Energy Fuel 18:1457–1462. CrossRefGoogle Scholar
  87. 87.
    Phan AN, Phan TM (2008) Biodiesel production from waste cooking oils. Fuel 87:3490–3496. CrossRefGoogle Scholar
  88. 88.
    Stavarache C, Vinatoru M, Maeda Y (2007) Aspects of ultrasonically assisted transesterification of various vegetable oils with methanol. Ultrason Sonochem 14:380–386PubMedCrossRefGoogle Scholar
  89. 89.
    Ho KC, Shahbaz K, Rashmi W, Mjalli F, Hashim M, Alnashef I (2015) Removal of glycerol from palm oil-based biodiesel using new ionic liquids analogues. J Eng Sci Technol:98–111Google Scholar
  90. 90.
    Weaver J, Howell S (2017) Biodiesel industry overview & technical update. Accessed 28 Mar 2017
  91. 91.
    Lane J (2017) Ethanol and biodiesel: dropping below the production cost of fossil fuels? Accessed 16 Feb 2018
  92. 92.
    Hajjari M, Tabatabaei M, Aghbashlo M, Ghanavati H (2017) A review on the prospects of sustainable biodiesel production: a global scenario with an emphasis on waste-oil biodiesel utilization. Renew Sustain Energ Rev 72:445–464. CrossRefGoogle Scholar
  93. 93.
    Mardhiah HH, Ong HC, Masjuki HH, Lim S, Lee HV (2017) A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils. Renew Sustain Energ Rev 67:1225–1236. CrossRefGoogle Scholar
  94. 94.
    Nielsen F, Hill B, deJongh J (2011) Castor (Ricinus communis) potential of castor for bio-fuel production. FACT Foundation:1–15Google Scholar
  95. 95.
    Mohod AV, Subudhi AS, Gogate PR (2017) Intensification of esterification of non edible oil as sustainable feedstock using cavitational reactors. Ultrason Sonochem 36:309–318. PubMedCrossRefGoogle Scholar
  96. 96.
    Kumar H, Alén R (2016) Microwave-assisted esterification of tall oil fatty acids with methanol using lignin-based solid catalyst. Energy Fuel 30:9451–9455. CrossRefGoogle Scholar
  97. 97.
    Keskin A, Gürü M, Altıparmak D (2007) Biodiesel production from tall oil with synthesized Mn and Ni based additives: effects of the additives on fuel consumption and emissions. Fuel 86:1139–1143. CrossRefGoogle Scholar
  98. 98.
    Azócar L, Ciudad G, Heipieper HJ, Navia R (2010) Biotechnological processes for biodiesel production using alternative oils. Appl Microbiol Biotechnol 88:621–636. PubMedCrossRefGoogle Scholar
  99. 99.
    Rashed MM, Kalam MA, Masjuki HH, Mofijur M, Rasul MG, Zulkifli NWM (2016) Performance and emission characteristics of a diesel engine fueled with palm, jatropha, and moringa oil methyl ester. Ind Crop Prod 79:70–76. CrossRefGoogle Scholar
  100. 100.
    Mahmudul HM, Hagos FY, Mamat R, Adam AA, Ishak WFW, Alenezi R (2017) Production, characterization and performance of biodiesel as an alternative fuel in diesel engines—a review. Renew Sustainable Energy Rev 72:497–509. CrossRefGoogle Scholar
  101. 101.
    Giuliano Albo PA, Lago S, Wolf H, Pagel R, Glen N, Clerck M, Ballereau P (2017) Density, viscosity and specific heat capacity of diesel blends with rapeseed and soybean oil methyl ester. Biomass Bioenergy 96:87–95. CrossRefGoogle Scholar
  102. 102.
    Lin L, Cunshan Z, Vittayapadung S, Xiangqian S, Mingdong D (2011) Opportunities and challenges for biodiesel fuel. Appl Energy 88:1020–1031. CrossRefGoogle Scholar
  103. 103.
    Ozcanli M, Akar MA, Calik A, Serin H (2017) Using HHO (hydroxy) and hydrogen enriched castor oil biodiesel in compression ignition engine. Int J Hydrog Energy 42:23366–23372. CrossRefGoogle Scholar
  104. 104.
    Yaakob Z, Mohammad M, Alherbawi M, Alam Z, Sopian K (2013) Overview of the production of biodiesel from waste cooking oil. Renew Sustain Energ Rev 18:184–193. CrossRefGoogle Scholar
  105. 105.
    Mikulec J, Kleinová A, Cvengroš J, Banič M (2012) Catalytic transformation of tall oil into biocomponent of diesel fuel. Int J Chem Eng 2012.
  106. 106.
    Kiatkittipong W, Phimsen S, Kiatkittipong K, Wongsakulphasatch S, Laosiripojana N, Assabumrungrat S (2013) Diesel-like hydrocarbon production from hydroprocessing of relevant refining palm oil. Fuel Process Technol 116:16–26. CrossRefGoogle Scholar
  107. 107.
    Junming X, Jianchun J, Yanju L, Jie C (2009) Liquid hydrocarbon fuels obtained by the pyrolysis of soybean oils. Bioresour Technol 100:4867–4870. PubMedCrossRefGoogle Scholar
  108. 108.
    Oasmaa A, van de Beld B, Saari P, Elliott DC, Solantausta Y (2015) Norms, standards, and legislation for fast pyrolysis bio-oils from lignocellulosic biomass. Energy Fuel 29:2471–2484. CrossRefGoogle Scholar
  109. 109.
    Chiaramonti D, Prussi M, Buffi M, Rizzo AM, Pari L (2017) Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production. Appl Energy 185:963–972. CrossRefGoogle Scholar
  110. 110.
    Lu Q, Li W-Z, Zhu X-F (2009) Overview of fuel properties of biomass fast pyrolysis oils. Energy Convers Manag 50:1376–1383. CrossRefGoogle Scholar
  111. 111.
    Demirbas A (2010) New biorenewable fuels from vegetable oils. Energy Source 32:628–636. CrossRefGoogle Scholar
  112. 112.
    Lima DG, Soares VCD, Ribeiro EB, Carvalho DA, Cardoso ÉCV, Rassi FC, Mundim KC, Rubim JC, Suarez PAZ (2004) Diesel-like fuel obtained by pyrolysis of vegetable oils. J Anal Appl Pyrolysis 71:987–996. CrossRefGoogle Scholar
  113. 113.
    Dandi̇k L, Aksoy HA (1999) Effect of catalyst on the pyrolysis of used oil carried out in a fractionating pyrolysis reactor. Renew Energy 16:1007–1010. CrossRefGoogle Scholar
  114. 114.
    Abollé A, Planche H, Trokourey A, Gossan A (2017) Energy valorization by continuous catalyst pyrolysis of tropical vegetable oils. Int J Eng Sci:4195–4201Google Scholar
  115. 115.
    Zhenyi C, Xing J, Shuyuan L, Li L (2004) Thermodynamics calculation of the pyrolysis of vegetable oils. Energ Source 26:849–856. CrossRefGoogle Scholar
  116. 116.
    Araújo AMdeM, Limo RdeO, Gondim AD, Diniz J, Souza LD, ASd A (2017) Thermal and catalytic pyrolysis of sunflower oil using AlMCM-41. Renew Energy 101:900–906.
  117. 117.
    Zhao X, Wei L, Cheng S, Julson J (2017) Review of heterogeneous catalysts for catalytically upgrading vegetable oils into hydrocarbon biofuels. Catalysts 7:83. CrossRefGoogle Scholar
  118. 118.
    Šimáček P, Kubička D, Šebor G, Pospíšil M (2010) Fuel properties of hydroprocessed rapeseed oil. Fuel 89:611–615. CrossRefGoogle Scholar
  119. 119.
    Chang C-C, Wan S-W (1947) China’s motor fuels from tung oil. Ind Eng Chem 39:1543–1548CrossRefGoogle Scholar
  120. 120.
    Demirbaş A (2002) Diesel fuel from vegetable oil via transesterification and soap pyrolysis. Energ Source 24:835–841. CrossRefGoogle Scholar
  121. 121.
    Fréty R, MdGCd R, Brandão ST, Pontes LA, Padilha JF, Borges LE, Gonzalez WA (2011) Cracking and hydrocracking of triglycerides for renewable liquid fuels: alternative processes to transesterification. J Braz Chem Soc 22:1206–1220. CrossRefGoogle Scholar
  122. 122.
    Demirbas A (2009) Biofuels securing the planet’s future energy needs. Energy Convers Manag 50:2239–2249. CrossRefGoogle Scholar
  123. 123.
    Lappi H, Alén R (2012) Pyrolysis of tall oil-derived fatty and resin acid mixtures. ISRN Renewable Energy 2012.
  124. 124.
    Wang Y, Mourant D, Hu X, Zhang S, Lievens C, Li C-Z (2013) Formation of coke during the pyrolysis of bio-oil. Fuel 108:439–444. CrossRefGoogle Scholar
  125. 125.
    Ringer M, Putsche V, Scahil J (2006) Large-scale pyrolysis oil production: a technology assessment and economic analysis. golden (CO): National Renewable Energy Laboratory; 2006 Nov. Report No. NREL/TP-510-37779. Contract No.: DE-AC36-99-GO10337Google Scholar
  126. 126.
  127. 127.
    Salonen I (2011) Neste oil’s capital markets day and short-term outlook. Neste Oil Corporation. Accessed 18 Feb 2018
  128. 128.
    Cheah KW, Yusup S, Gurdeep Singh HK, Uemura Y, Lam HL (2017) Process simulation and techno economic analysis of renewable diesel production via catalytic decarboxylation of rubber seed oil—a case study in Malaysia. J Environ Manag 203:950–961. CrossRefGoogle Scholar
  129. 129.
    Petri J, Marker T (2006) Production of diesel fuel from biorenewable feedstocks. US Patent 20060264684A1Google Scholar
  130. 130.
    Herskowitz M (2008) Reaction system for production of diesel fuel from vegetable and animals oils. US Patent 20080066374 A1,Google Scholar
  131. 131.
    Pandarus V, Gingras G, Béland F, Ciriminna R, Pagliaro M (2012) Selective hydrogenation of vegetable oils over Silia Cat Pd (0). Org Process Res Dev 16:1307–1311. CrossRefGoogle Scholar
  132. 132.
    Alvarez-Galvan MC, Blanco-Brieva G, Capel-Sanchez M, Morales-delaRosa S, Campos-Martin JM, Fierro JL (2017) Metal phosphide catalysts for the hydrotreatment of non-edible vegetable oils. Catal Today.
  133. 133.
    Guzman A, Torres JE, Prada LP, Nuñez ML (2010) Hydroprocessing of crude palm oil at pilot plant scale. Catal Today 156:38–43. CrossRefGoogle Scholar
  134. 134.
    Boonrod B, Prapainainar C, Narataruksa P, Kantama A, Saibautrong W, Sudsakorn K, Mungcharoen T, Prapainainar P (2017) Evaluating the environmental impacts of bio-hydrogenated diesel production from palm oil and fatty acid methyl ester through life cycle assessment. J Clean Prod 142:1210–1221. CrossRefGoogle Scholar
  135. 135.
    Huber GW, O’Connor P, Corma A (2007) Processing biomass in conventional oil refineries: production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures. Appl Catal, A 329:120–129. CrossRefGoogle Scholar
  136. 136.
    Orozco LM, Echeverri DA, Sánchez L, Rios LA (2017) Second-generation green diesel from castor oil: development of a new and efficient continuous-production process. Chem Eng J 322:149–156. CrossRefGoogle Scholar
  137. 137.
    Mikulec J, Cvengroš J, Joríková Ľ, Banič M, Kleinová A (2010) Second generation diesel fuel from renewable sources. J Clean Prod 18:917–926. CrossRefGoogle Scholar
  138. 138.
    Laurikko JK, Nylund N-O, Aakko-Saksa P, Mannonen S, Vauhkonen V, Roslund P (2014) Crude tall oil-based renewable diesel in passenger car field test. SAE Technical Paper.
  139. 139.
    Almutairi A, Wu D, Guo B, Roskilly AP, Ottley C (2017) Characterization of lubricant degeneration and component deterioration on diesel engine fueling with straight plant oil. Energy Procedia 105:636–641. CrossRefGoogle Scholar
  140. 140.
    Misra RD, Murthy MS (2010) Straight vegetable oils usage in a compression ignition engine—a review. Renew Sustain Energ Rev 14:3005–3013. CrossRefGoogle Scholar
  141. 141.
    Bari S, Lim TH, Yu CW (2002) Effects of preheating of crude palm oil (CPO) on injection system, performance and emission of a diesel engine. Renew Energy 27:339–351. CrossRefGoogle Scholar
  142. 142.
    Lin B-F, Huang J-H, Huang D-Y (2009) Experimental study of the effects of vegetable oil methyl ester on DI diesel engine performance characteristics and pollutant emissions. Fuel 88:1779–1785. CrossRefGoogle Scholar
  143. 143.
    Kalam MA, Masjuki HH (2002) Biodiesel from palmoil—an analysis of its properties and potential. Biomass Bioenergy 23:471–479. CrossRefGoogle Scholar
  144. 144.
    Rakopoulos CD, Antonopoulos KA, Rakopoulos DC, Hountalas DT, Giakoumis EG (2006) Comparative performance and emissions study of a direct injection diesel engine using blends of diesel fuel with vegetable oils or bio-diesels of various origins. Energy Convers Manag 47:3272–3287. CrossRefGoogle Scholar
  145. 145.
    Buyukkaya E (2010) Effects of biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel 89:3099–3105. CrossRefGoogle Scholar
  146. 146.
    Serrano L, Carreira V, Câmara R, da Silva MG (2012) On-road performance comparison of two identical cars consuming petrodiesel and biodiesel. Fuel Process Technol 103:125–133. CrossRefGoogle Scholar
  147. 147.
    Moon G, Lee Y, Choi K, Jeong D (2010) Emission characteristics of diesel, gas to liquid, and biodiesel-blended fuels in a diesel engine for passenger cars. Fuel 89:3840–3846. CrossRefGoogle Scholar
  148. 148.
    Fontaras G, Karavalakis G, Kousoulidou M, Tzamkiozis T, Ntziachristos L, Bakeas E, Stournas S, Samaras Z (2009) Effects of biodiesel on passenger car fuel consumption, regulated and non-regulated pollutant emissions over legislated and real-world driving cycles. Fuel 88:1608–1617. CrossRefGoogle Scholar
  149. 149.
    Van de Beld B, Holle E, Florijn J (2013) The use of pyrolysis oil and pyrolysis oil derived fuels in diesel engines for CHP applications. Appl Energy 102:190–197. CrossRefGoogle Scholar
  150. 150.
    Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuel 18:590–598. CrossRefGoogle Scholar
  151. 151.
    Fortum (2015) Fortum’s first export batch of Finnish bio-oil to E.ON in Sweden. Accessed 27 Aug 2017
  152. 152.
    Toussaint A (2017) BTG-BTL pyrolysis process. Accessed 27 Aug 2017
  153. 153.
    Kim D, Kim S, Oh S, No S-Y (2014) Engine performance and emission characteristics of hydrotreated vegetable oil in light duty diesel engines. Fuel 125:36–43. CrossRefGoogle Scholar
  154. 154.
    Birzietis G, Pirs V, Dukulis I, Gailis M (2017) Effect of commercial diesel fuel and hydrotreated vegetable oil blend on automobile performance. Agron Res 15:964–970Google Scholar
  155. 155.
    Heuser B, Vauhkonen V, Mannonen S, Rohs H, Kolbeck A (2013) Crude tall oil-based renewable diesel as a blending component in passenger car diesel engines. SAE Int J Fuels Lubr 6:817–825. CrossRefGoogle Scholar
  156. 156.
    Aatola H, Larmi M, Sarjovaara T, Mikkonen S (2008) Hydrotreated vegetable oil (HVO) as a renewable diesel fuel: trade-off between NOx, particulate emission, and fuel consumption of a heavy duty engine. SAE Int J Engines 1:1251–1262. CrossRefGoogle Scholar
  157. 157.
    Abbaszaadeh A, Ghobadian B, Omidkhah MR, Najafi G (2012) Current biodiesel production technologies: a comparative review. Energy Convers Manag 63:138–148. CrossRefGoogle Scholar
  158. 158.
    Sani Y, Daud W, Aziz AA (2012) Biodiesel feedstock and production technologies: successes, challenges and prospects. In: Fang Z (ed) Biodiesel-feedstocks, production and applications. InTech, pp 2514–2381Google Scholar
  159. 159.
    Balat M, Balat H (2008) A critical review of bio-diesel as a vehicular fuel. Energy Convers Manag 49:2727–2741. CrossRefGoogle Scholar
  160. 160.
    Verma M, Godbout S, Brar S, Solomatnikova O, Lemay S, Larouche J (2012) Biofuels production from biomass by thermochemical conversion technologies. Int J Chem Eng 2012Google Scholar
  161. 161.
    Garcia-Nunez JA, Garcia-Perez M, Rodriguez DT, Ramirez NE, Fontanilla C, Stockle C, Amonette J, Frear C, Silva E (2015) Evolution of palm oil mills into biorefineries: technical, and environmental assessment of six biorefinery options. In: ECI, Biorefinery I: Chemicals and Materials from Thermo-Chemical Biomass Conversion and Related Processes, Crete, Greece, ECI Symposium SeriesGoogle Scholar
  162. 162.
    Naylor RL, Higgins MM (2017) The rise in global biodiesel production: implications for food security. Glob Food Sec 16:75–84.
  163. 163.
    Aghbashlo M, Demirbas A (2016) Biodiesel: hopes and dreads. Biofuel Res J 3:379–379CrossRefGoogle Scholar
  164. 164.
    Ajanovic A (2011) Biofuels versus food production: does biofuels production increase food prices? Energy 36:2070–2076. CrossRefGoogle Scholar
  165. 165.
    Abu Bakar SNH, Abu Hasan H, Mohammad AW, Sheikh Abdullah SR, Haan TY, Ngteni R, Yusof KMM (2018) A review of moving-bed biofilm reactor technology for palm oil mill effluent treatment. J Clean Prod 171:1532–1545. CrossRefGoogle Scholar
  166. 166.
    Aro T, Fatehi P (2017) Tall oil production from black liquor: challenges and opportunities. Sep Purif Technol 175:469–480. CrossRefGoogle Scholar
  167. 167.
    Peters D, Stojcheva V (2017) Crude tall oil low ILUC risk assessment-Comparing global supply and demand. Accessed 14 Feb 2018
  168. 168.
    Yang F, Hanna MA, Sun R (2012) Value-added uses for crude glycerol—a byproduct of biodiesel production. Biotechnol Biofuels 5:13. PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Haider MH, Dummer NF, Knight DW, Jenkins RL, Howard M, Moulijn J, Taylor SH, Hutchings GJ (2015) Efficient green methanol synthesis from glycerol. Nat Chem 7:1028–1032. PubMedCrossRefGoogle Scholar
  170. 170.
    Ayre J (2016) Formula E uses recharging generators that run on glycerine. Clean Technica. Accessed 21 June 2017
  171. 171.
    Muggen G (2017) Sustainable transport fuels. btg-btl. Accessed 26 June 2017
  172. 172.
    Toussaint A (2017) Heat and power from pyrolysis oil. btg-btl. Accessed 26 June 2017
  173. 173.
    Jakkula J, Niemi V, Nikkonen J, Purola VM, Myllyoja J, Aalto P, Lehtonen J, Alopaeus V (2004) Process for producing a hydrocarbon component of biological origin. US Patent 20040230085 A1Google Scholar
  174. 174.
    Neste (2017) Neste renewable diesel. Accessed 27 June 2017
  175. 175.
    Mannonen S, Nylund N-O (2016) Great results from testing UPM’s wood-based diesel in buses. UPM, Media Relations. Accessed 27 June 2017
  176. 176.
    Nousiainen J, Knuuttila P, Rissanen A (2013) Process and apparatus for producing fuel from a biological origin through a single hydroprocessing step in the presence of a NiW catalyst. US Patent 20130067801 A1Google Scholar
  177. 177.
    Besse X, Schuurman Y, Guilhaume N (2016) Hydrothermal conversion of linoleic acid and ethanol for biofuel production. Appl Catal, A 524:139–148. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Natural Resources Institute Finland (Luke), Production SystemsKokkolaFinland
  2. 2.Laboratory of Applied ChemistryUniversity of JyväskyläJyväskyläFinland

Personalised recommendations