BioEnergy Research

, Volume 11, Issue 2, pp 456–465 | Cite as

Effect of Urea on the Enzymatic Hydrolysis of Lignocellulosic Substrate and Its Mechanism

  • Hongming Lou
  • Meilu Lin
  • Meijun Zeng
  • Cheng Cai
  • Yuxia Pang
  • Dongjie Yang
  • Xueqing Qiu


Effect of hydrogen bond breaker (urea) addition on the enzymatic hydrolysis of Avicel and eucalyptus pretreated by dilute acid (Eu-DA) was investigated. Urea enhanced the enzymatic hydrolysis of Eu-DA at 50 or 30 °C when the concentration of urea was below 60 g/L, while it inhibited the hydrolysis of Avicel. Low concentration urea (< 240 g/L) had little effect on the cellulase spatial structure and its activity. But it decreased cellulase binding to cellulose surface to inhibit the cellulose hydrolysis. Meanwhile, urea obviously prevented the adsorption of cellobiohydrolase I (CBHI) on the lignin in spite of little effect on the adsorption of β-glucosidase (BGL) and two endoglucanases (EGIII and EGV) on lignin. It was proposed that urea enhanced the enzymatic efficiency of Eu-DA by decreasing the cellulase adsorption on lignin surface.


Lignocellulose Urea Enzymatic hydrolysis Cellulase adsorption 


Funding Information

The authors acknowledge the financial supports of the National Natural Science Foundation of China (21676109, 21376100), Science and Technology Program of Guangzhou (201707020025), and Guangdong Special Support Plan (2016TX03Z298).


  1. 1.
    Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38(4):449–467. CrossRefGoogle Scholar
  2. 2.
    Somerville C, Youngs H, Taylor C, Davis SC, Long P (2010) Feedstocks for lignocellulosic biofuels. Science 329(5993):790–791. CrossRefPubMedGoogle Scholar
  3. 3.
    Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2(1):26–40. CrossRefGoogle Scholar
  4. 4.
    Agrawal R, Gaur R, Mathur A, Kumar R, Gupta RP, Tuli DK, Satlewal A (2015) Improved saccharification of pilot-scale acid pretreated wheat straw by exploiting the synergistic behavior of lignocellulose degrading enzymes. RSC Adv 5(87):71462–71471. CrossRefGoogle Scholar
  5. 5.
    Gao D, Haarmeyer C, Balan V, Whitehead TA, Dale BE, Chundawat SP (2014) Lignin triggers irreversible cellulase loss during pretreated lignocellulosic biomass saccharification. Biotechnol Biofuels 7:175. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Banerjee G, Scott-Craig JS, Walton JD (2010) Improving enzymes for biomass conversion: a basic research perspective. BioEnergy Res 3(1):82–92. CrossRefGoogle Scholar
  7. 7.
    Kumar L, Arantes V, Chandra R, Saddler J (2012) The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresour Technol 103(1):201–208. CrossRefPubMedGoogle Scholar
  8. 8.
    Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Method Enzymol 160:87–112CrossRefGoogle Scholar
  9. 9.
    Henrissat B, Driguez H, Viet C, Schülein M (1985) Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Nat Biotechnol 3:722–726. CrossRefGoogle Scholar
  10. 10.
    Gupta R, Lee YY (2009) Mechanism of cellulase reaction on pure cellulosic substrates. Biotechnol Bioeng 102(6):1570–1581. CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang Y-HP, Himmel M, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24(5):452–481. CrossRefGoogle Scholar
  12. 12.
    Sinnott M (1990) Catalytic mechanisms of enzymatic glycosyl transfer. Chem Rev 90(7):1171–1202.
  13. 13.
    Himmel ME, Ding SY, Johnson DK, Adney WS, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807. CrossRefPubMedGoogle Scholar
  14. 14.
    Guo FF, Shi WJ, Sun W, Li XZ, Wang FF, Zhao J, Qu YB (2014) Differences in the adsorption of enzymes onto lignins from diverse types of lignocellulosic biomass and the underlying mechanism. Biotechnol Biofuels 7:38. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Qin CG, Clarke K, Li KC (2014) Interactive forces between lignin and cellulase as determined by atomic force microscopy. Biotechnol Biofuels 7:65. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Eriksson T, Börjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzym Microb Technol 31(2002):353–364.
  17. 17.
    Lou H, Zhu JY, Lan TQ, Lai H, Qiu X (2013) pH-induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocellulose. ChemSusChem 6(5):919–927. CrossRefPubMedGoogle Scholar
  18. 18.
    Berlin A, Balakshin M, Gilkes N, Kadla J, Maximenko V, Kubo S, Saddler J (2006) Inhibition of cellulase, xylanase and beta-glucosidase activity by softwood lignin preparations. J Biotechnol 125(2):198–209. CrossRefPubMedGoogle Scholar
  19. 19.
    Strobel KL, Pfeiffer KA, Blanch HW, Clark DS (2016) Engineering cel7a carbohydrate binding module and linker for reduced lignin inhibition. Biotechnol Bioeng 113(6):1369–1374. CrossRefPubMedGoogle Scholar
  20. 20.
    Pan X (2008) Role of functional groups in lignin inhibition of enzymatic hydrolysis of cellulose to glucose. J Biobased Mater Bioenergy 2(1):25–32. CrossRefGoogle Scholar
  21. 21.
    Yu Z, Gwak KS, Treasure T, Jameel H, Chang HM, Park S (2014) Effect of lignin chemistry on the enzymatic hydrolysis of woody biomass. ChemSusChem 7(7):1942–1950. CrossRefPubMedGoogle Scholar
  22. 22.
    Qin C, Clarke K, Li K (2014) Interactive forces between lignin and cellulase as determined by atomic force microscopy. Biotechnol biofuels 7:65.
  23. 23.
    Rahikainen JL, Evans JD, Mikander S, Kalliola A, Puranen T, Tamminen T, Marjamaa K, Kruus K (2013) Cellulase-lignin interactions-the role of carbohydrate-binding module and pH in non-productive binding. Enzym Microb Technol 53(5):315–321. CrossRefGoogle Scholar
  24. 24.
    Agrawal R, Satlewal A, Kapoor M, Mondal S, Basu B (2017) Investigating the enzyme-lignin binding with surfactants for improved saccharification of pilot scale pretreated wheat straw. Bioresour Technol 224:411–418. CrossRefPubMedGoogle Scholar
  25. 25.
    Börjesson J, Engqvist M, Sipos B, Tjerneld F (2007) Effect of poly(ethylene glycol) on enzymatic hydrolysis and adsorption of cellulase enzymes to pretreated lignocellulose. Enzym Microb Technol 41(1–2):186–195. CrossRefGoogle Scholar
  26. 26.
    Lan T, Lou H, Zhu JY (2013) Enzymatic saccharification of lignocelluloses should be conducted at elevated pH 5.2–6.2. Bioenerg Res 6:476–485. CrossRefGoogle Scholar
  27. 27.
    Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–112.
  28. 28.
    Cai C, Qiu X, Lin X, Lou H, Pang Y, Yang D, Chen S, Cai K (2016) Improving enzymatic hydrolysis of lignocellulosic substrates with pre-hydrolysates by adding cetyltrimethylammonium bromide to neutralize lignosulfonate. Bioresour Technol 216:968–975. CrossRefPubMedGoogle Scholar
  29. 29.
    Pan X, Kadla JF, Ehara K, Gilkes N, Saddler J (2006) Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. J Agric Food Chem 54:5806–5813. CrossRefPubMedGoogle Scholar
  30. 30.
    Nakagame S, Chandra RP, Saddler JN (2011) The influence of lignin on the enzymatic hydrolysis of pretreated biomass substrates. ACS Symp Ser 1067:145–167. CrossRefGoogle Scholar
  31. 31.
    Mandels M, Andreotti R, Roche C (1976) Measurement of saccharifying cellulase. Biotechnol Bioeng Syrup 6:17–33.
  32. 32.
    Turner MB, Spear SK, Huddleston JG, Holbrey JD, Rogers RD (2003) Ionic liquid salt-induced inactivation and unfolding of cellulase from Trichoderma reesei. Green Chem 5(4):443. CrossRefGoogle Scholar
  33. 33.
    Norgren M, Notley SM, Majtnerova A, Gellerstedt G (2006) Smooth model surfaces from lignin derivatives. i. Preparation and characterization. Langmuir 22:1209–1214. CrossRefPubMedGoogle Scholar
  34. 34.
    Fawcett JK, Scott JE (1960) A rapid and precise method for the determination of urea. J Clin Path 13:156–159. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Toyosawa Y, Ikeo M, Taneda D, Okino S (2017) Quantitative analysis of adsorption and desorption behavior of individual cellulase components during the hydrolysis of lignocellulosic biomass with the addition of lysozyme. Bioresour Technol 234:150–157. CrossRefPubMedGoogle Scholar
  36. 36.
    Lu X, Zheng X, Li X, Zhao J (2016) Adsorption and mechanism of cellulase cellulases onto lignin isolated from corn Stover pretreated with liquid hot water. Biotechnol biofuels 9:118. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Yarbrough JM, Mittal A, Mansfield E, Taylor LE 2nd, Hobdey SE, Sammond DW, Bomble YJ, Crowley MF, Decker SR, Himmel ME, Vinzant TB (2015) New perspective on glycoside hydrolase binding to lignin from pretreated corn stover. Biotechnol Biofuels 8:214. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hui JP, Lanthier P, White TC, McHugh SG, Yaguchi M, Roy R, Thibault P (2001) Characterization of cellobiohydrolase I (Cel7A) glycoforms from extracts of Trichoderma reeseiusing capillary isoelectric focusing and electrospray mass spectrometry. J Chromatogr B 752:349–368.
  39. 39.
    Rahikainen J, Mikander S, Marjamaa K, Tamminen T, Lappas A, Viikari L, Kruus K (2011) Inhibition of enzymatic hydrolysis by residual lignins from softwood—study of enzyme binding and inactivation on lignin-rich surface. Biotechnol Bioeng 108(12):2823–2834. CrossRefPubMedGoogle Scholar
  40. 40.
    Ko JK, Ximenes E, Kim Y (2015) Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods. Biotechnol Bioeng 112(3):447–456. CrossRefPubMedGoogle Scholar
  41. 41.
    Rahikainen J (2013) Cellulase-lignin interactions in the enzymatic hydrolysis of lignocellulose. Dissertation, the university of HelsinkiGoogle Scholar
  42. 42.
    Yang Z, Zhang C (2009) Adsorption/desorption behavior of protein on nanosized hydroxyapatite coatings: a quartz crystal microbalance study. Appl Surf Sci 255(8):4569–4574. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hongming Lou
    • 1
    • 2
  • Meilu Lin
    • 1
  • Meijun Zeng
    • 1
  • Cheng Cai
    • 1
  • Yuxia Pang
    • 1
  • Dongjie Yang
    • 1
  • Xueqing Qiu
    • 1
    • 2
  1. 1.School of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations