BioEnergy Research

, Volume 11, Issue 2, pp 414–425 | Cite as

Techno-Economic Evaluation of Cellulosic Ethanol Production Based on Pilot Biorefinery Data: a Case Study of Sweet Sorghum Bagasse Processed via L+SScF

  • Rick van Rijn
  • Ismael U. Nieves
  • K. T. Shanmugam
  • Lonnie O. Ingram
  • Wilfred Vermerris


Replacing fossil fuels with renewable fuels derived from lignocellulosic biomass can contribute to the mitigation of global warming and the economic development of rural communities. This will require lignocellulosic biofuels to become price competitive with fossil fuels. Techno-economic analyses can provide insights into which parts of the biofuel production process need to be optimized to reduce cost or energy use. We used data obtained from a pilot biorefinery to model a commercial-scale biorefinery that processes lignocellulosic biomass to ethanol, with a focus on the minimum ethanol selling price (MESP). The process utilizes a phosphoric acid-catalyzed pre-treatment of sweet sorghum bagasse followed by liquefaction and simultaneous saccharification and co-fermentation (L+SScF) of hexose and pentose sugars by an engineered Escherichia coli strain. After validating a techno-economic model developed with the SuperPro Designer software for the conversion of sugarcane bagasse to ethanol by comparing it to a published Aspen Plus model, six different scenarios were modeled for sweet sorghum bagasse Under the most optimistic scenario, the ethanol can be produced at a cost close to the energy-equivalent price of gasoline. Aside from an increase in the price of gasoline, the gap between ethanol and gasoline prices could also be bridged by either a decrease in the cost of cellulolytic enzymes or development of value-added products from lignin.


Biofuel MESP Sorghum Sugarcane Sensitivity analysis 


Funding Information

The authors gratefully acknowledge funding from the USDA-NIFA Biomass Research and Development Initiative Grant No. 2011-10006-30358 (WV, KTS, LOI); US Department of Energy’s Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office and sponsored by the US DOE’s International Affairs under award no. DE-PI0000031 (WV, KTS, LOI); and Florida Department of Agriculture and Consumer Sciences Grant No. 020650 (LOI). The authors also thank Foley Cellulose (Perry, Florida) for proving low-pressure steam and many amenities for the pilot plant, Florida Crystals (West Palm Beach, FL) for providing sugarcane bagasse; Dr. Randy Powell and colleagues at Delta BioRenewables (Memphis, TN) for processing sweet sorghum on a commercial scale; and Novozymes North America (Franklinton, NC) for providing cellulase enzymes.

Supplementary material

12155_2018_9906_MOESM1_ESM.docx (68 kb)
ESM 1 (DOCX 67kb)


  1. 1.
    Schneider UA, McCarl BA (2003) Economic potential of biomass based fuels for greenhouse gas emission mitigation. Environ Resour Econ 24:291–312CrossRefGoogle Scholar
  2. 2.
    Energy Information Agency (2017) Electricity Data Accessed 14 March 2018
  3. 3.
    Fulton LM, Lynd LR, Körner A, Greene N, Tonachel LR (2015) The need for biofuels as part of a low carbon energy future. Biofuels Bioprod Biorefin 9:476–483. CrossRefGoogle Scholar
  4. 4.
    Pickett J, Anderson D, Bowles D, Bridgwater T, Jarvis P, Mortimer N, Poliakoff M, Woods J (2008) Sustainable biofuels: prospects and challenges. The Royal Society, London, p 81. Available at:
  5. 5.
    Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375CrossRefGoogle Scholar
  6. 6.
    Klemm D, Heublein B, Fink H, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chemie Int Ed 44:3358–3393CrossRefGoogle Scholar
  7. 7.
    Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30. CrossRefPubMedGoogle Scholar
  8. 8.
    Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH, Boerjan W (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem Rev 3:29–60. CrossRefGoogle Scholar
  9. 9.
    Chovau S, Degrauwe D, Van der Bruggen B (2013) Critical analysis of techno-economic estimates for the production cost of lignocellulosic bio-ethanol. Renew Sust Energ Rev 26:307–321CrossRefGoogle Scholar
  10. 10.
    Kaushik A, Singh M (2011) Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydr Res 346:76–85CrossRefPubMedGoogle Scholar
  11. 11.
    Hu F, Ragauskas A (2012) Pretreatment and lignocellulosic chemistry. Bioenerg Res 5:1043–1066. CrossRefGoogle Scholar
  12. 12.
    Leu SY, Zhu JY (2013) Substrate-related factors affecting enzymatic saccharification of lignocelluloses: our recent understanding. Bioenerg Res 6:405–415. CrossRefGoogle Scholar
  13. 13.
    United Nations Conference on Trade and Development (2015) Second-generation biofuel markets: state of play, trade and developing countries perspectives.
  14. 14.
    Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour Technol 74:69–80CrossRefGoogle Scholar
  15. 15.
    Regassa TH, Wortmann CS (2014) Sweet sorghum as a bioenergy crop: literature review. Biomass Bioenergy 64:348–355. CrossRefGoogle Scholar
  16. 16.
    Shukla S, Felderhoff TJ, Saballos A, Vermerris W (2017) The relationship between plant height and sugar accumulation in the stems of sweet sorghum (Sorghum bicolor (L.) Moench). Field Crop Res 203:181–191. CrossRefGoogle Scholar
  17. 17.
    Castro E, Nieves IU, Rondón V, Sagues WJ, Fernández-Sandoval MT, Yomano LP, York SW, Erickson J, Vermerris W (2017) Potential for ethanol production from different sorghum cultivars. Ind Crop Prod 109:367–373. CrossRefGoogle Scholar
  18. 18.
    Adams CB, Erickson JE, Singh MP (2015) Investigation and synthesis of sweet sorghum crop responses to nitrogen and potassium fertilization. Field Crop Res 178:1–7. CrossRefGoogle Scholar
  19. 19.
    Erickson JE, Woodard KR, Sollenberger LE (2012) Optimizing sweet sorghum production for biofuel in the southeastern USA through nitrogen fertilization and top removal. Bioenerg Res 5:86–94. CrossRefGoogle Scholar
  20. 20.
    Ou MS, Awasthi D, Nieves I, Wang L, Erickson J, Vermerris W, Ingram LO, Shanmugam KT (2015) Sweet sorghum juice and bagasse as feedstocks for the production of optically pure lactic acid by native and engineered Bacillus coagulans strains. Bioenerg Res 9:123–131. CrossRefGoogle Scholar
  21. 21.
    Wang L, Ou MS, Nieves I, Erickson JE, Vermerris W, Ingram LO, Shanmugam KT (2015) Fermentation of sweet sorghum derived sugars to butyric acid at high titer and productivity by a moderate thermophile Clostridium thermobutyricum at 50°C. Bioresour Technol 198:533–539. CrossRefPubMedGoogle Scholar
  22. 22.
    Vermerris W, Saballos A (2013) Genetic enhancement of sorghum for biomass utilization. In: Paterson AH (ed) Genomics of the Saccharinae. Springer, New York, pp 391–424CrossRefGoogle Scholar
  23. 23.
    Vermerris W, Saballos A, Ejeta G, Mosier NS, Ladisch MR, Carpita NC (2007) Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci 47:S142–S153. CrossRefGoogle Scholar
  24. 24.
    Tyner WE, Taheripour F (2007) Renewable energy policy alternatives for the future. Am J Agric Econ 89:1303–1310. CrossRefGoogle Scholar
  25. 25.
    Sheridan C (2013) Big oil turns on biofuels. Nat Biotechnol 31:870–873CrossRefPubMedGoogle Scholar
  26. 26.
    U.S. EPA Renewable Fuel Standard Program. Accessed 14 March 2018
  27. 27.
    Brown TR (2015) A critical analysis of thermochemical cellulosic biorefinery capital cost estimates. Biofuels Bioprod Biorefin 9:412–421. CrossRefGoogle Scholar
  28. 28.
    Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 96:2019–2025. CrossRefPubMedGoogle Scholar
  29. 29.
    Hamelinck CN, van HG, Faaij AP (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410. CrossRefGoogle Scholar
  30. 30.
    Kumar D, Murthy GS (2011) Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnol Biofuels 4:27. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Aden A, Foust T (2009) Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose 16:535–545CrossRefGoogle Scholar
  32. 32.
    Dutta A, Dowe N, Ibsen KN, Schell DJ, Aden A (2010) An economic comparison of different fermentation configurations to convert corn stover to ethanol using Z. mobilis and Saccharomyces. Biotechnol Prog 26:64–72PubMedGoogle Scholar
  33. 33.
    Konda NM, Shi J, Singh S, Blanch HW, Simmons BA, Klein-Marcuschamer D (2014) Understanding cost drivers and economic potential of two variants of ionic liquid pretreatment for cellulosic biofuel production. Biotechnol Biofuels 7:86CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Klein-Marcuschamer D, Simmons BA, Blanch HW (2011) Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment. Biofuels Bioprod Biorefin 5:562–569CrossRefGoogle Scholar
  35. 35.
    Vicari KJ, Tallam SS, Shatova T, Joo K, Scarlata CJ, Humbird D, Wolfrum EJ, Beckham GT (2012) Uncertainty in techno-economic estimates of cellulosic ethanol production due to experimental measurement uncertainty. Biotechnol Biofuels 5:23. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B (2002) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. Natl Renew Energy Lab. NREL/TP-510-32438
  37. 37.
    Fontana JD, Correa JBC, Duarte JH et al (1984) Aqueous phosphoric acid hydrolysis of hemicelluloses from sugarcane and sorghum bagasses. Biotechnol Bioeng Symp 14:175–186Google Scholar
  38. 38.
    Geddes CC, Mullinnix MT, Nieves IU, Peterson JJ, Hoffman RW, York SW, Yomano LP, Miller EN, Shanmugam KT, Ingram LO (2011) Simplified process for ethanol production from sugarcane bagasse using hydrolysate-resistant Escherichia coli strain MM160. Bioresour Technol 102:2702–2711CrossRefPubMedGoogle Scholar
  39. 39.
    Geddes CC, Mullinnix MT, Nieves IU, Hoffman RW, Sagues WJ, York SW, Shanmugam KT, Erickson JE, Vermerris WE, Ingram LO (2013) Seed train development for the fermentation of bagasse from sweet sorghum and sugarcane using a simplified fermentation process. Bioresour Technol 128:716–724CrossRefPubMedGoogle Scholar
  40. 40.
    Gubicza K, Nieves IU, Sagues WJ, Barta Z, Shanmugam KT, Ingram LO (2016) Techno-economic analysis of ethanol production from sugarcane bagasse using a liquefaction plus simultaneous saccharification and co-fermentation process. Bioresour Technol 208:42–48CrossRefPubMedGoogle Scholar
  41. 41.
    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (LAP) Tech Rep NREL/ TP-510-42618 1–15. National Renewable Energy Laboratory, GoldenGoogle Scholar
  42. 42.
    Rodrigues AC, Haven MØ, Lindedam J, Felby C, Gama M (2015) Celluclast and Cellic® CTec2: Saccharification/fermentation of wheat straw, solid-liquid partition and potential of enzyme recycling by alkaline washing. Enzym Microb Technol 79–80:70–77. CrossRefGoogle Scholar
  43. 43.
    Novozymes (2010) Cellic® CTec2 and HTec2—enzymes for hydrolysis of lignocellulosic materials.1–9. doi: 2010-01668-01. Available at: Accessed 14 March 2018
  44. 44.
  45. 45.
    Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266. CrossRefPubMedGoogle Scholar
  46. 46.
    Zheng H, Wang X, Yomano LP, Shanmugam KT, Ingram LO (2012) Increase in furfural tolerance in ethanologenic Escherichia coli LY180 by plasmid-based expression of thyA. Appl Environ Microbiol 78:4346–4352. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Geddes R, Shanmugam KT, Ingram LO (2015) Combining treatments to improve the fermentation of sugarcane bagasse hydrolysates by ethanologenic Escherichia coli LY180. Bioresour Technol 189:15–22. CrossRefPubMedGoogle Scholar
  48. 48.
    U.S. Department of Energy (2016) 2016 Billion-ton report: advancing domestic resources for a thriving bioeconomy, Volume 1: Economic availability of feedstocks. M. H. Langholtz, B. J. Stokes, and L. M. Eaton (Leads), ORNL/TM-2016/160. doi: 10.2172/1271651.
  49. 49.
    Graham RL, English BC, Noon CE (2000) A geographic information system-based modeling system for evaluating the cost of delivered energy crop feedstock. Biomass Bioenergy 18:309–329. CrossRefGoogle Scholar
  50. 50.
    Internal Revenue Service (2013) Instructions for Form 990-PF (2012)Google Scholar
  51. 51.
    Nieves IU, Geddes CC, Mullinnix MT, Hoffman RW, Tong Z, Castro E, Shanmugam KT, Ingram LO (2011) Injection of air into the headspace improves fermentation of phosphoric acid pretreated sugarcane bagasse by Escherichia coli MM170. Bioresour Technol 102:6959–6965. CrossRefPubMedGoogle Scholar
  52. 52.
    Baeyens J, Kang Q, Appels L, Dewil R, Lv Y, Tan T (2015) Challenges and opportunities in improving the production of bio-ethanol. Prog Energy Combust Sci 47:60–88. CrossRefGoogle Scholar
  53. 53.
    Peters MS, Timmerhaus KD, West RE et al (2002) Plant design and economics for chemical engineers. McGraw-Hill, New York, p 1008Google Scholar
  54. 54.
    Zhao X, Brown TR, Tyner WE (2015) Stochastic techno-economic evaluation of cellulosic biofuel pathways. Bioresour Technol 198:755–763. CrossRefPubMedGoogle Scholar
  55. 55.
    Searle S, Sanchez FP, Malins C, German J (2014) Technical barriers to the consumption of higher blends of ethanol. The Interntional Council on Clean Transportation, Washington, DC, p 36.
  56. 56.
    Babcock BA, Pouliot S (2013) Price it and they will buy: how E85 can break the blend wall. CARD Policy Brief13.
  57. 57.
    Golecha R, Gan J (2016) Optimal contracting structure between cellulosic biorefineries and farmers to reduce the impact of biomass supply variation: game theoretic analysis. Biofuels Bioprod Biorefin 10:129–138. CrossRefGoogle Scholar
  58. 58.
    Energy Information Administration Gasoline and Diesel Fuel Update. Accessed 14 March 2018
  59. 59.
    Wang L, Tong Z, Ingram LO, Cheng Q, Matthews S (2013) Green composites of poly (lactic acid) and sugarcane bagasse residues from bio-refinery processes. J Polym Environ 21:780–788CrossRefGoogle Scholar
  60. 60.
    Zeng J, Yoo CG, Wang F, Pan X, Vermerris W, Tong Z (2015) Biomimetic Fenton-catalyzed lignin depolymerization to high-value aromatics and dicarboxylic acids. ChemSusChem 8:861–871CrossRefPubMedGoogle Scholar
  61. 61.
    Ten E, Ling C, Wang Y, Srivastava A, Dempere LA, Vermerris W (2014) Lignin nanotubes as vehicles for gene delivery into human cells. Biomacromolecules 15:327–338CrossRefPubMedGoogle Scholar
  62. 62.
    Ten E, Vermerris W (2015) Recent developments in polymers derived from industrial lignin. J Appl Polym Sci 132:42069. CrossRefGoogle Scholar
  63. 63.
    De Wild PJ, Huijgen WJJ, Gosselink RJA (2014) Lignin pyrolysis for profitable lignocellulosic biorefineries. Biofuels, Bioprod Biorefining 8:645–657. CrossRefGoogle Scholar
  64. 64.
    Liska AJ, Perrin RK (2009) Indirect land use emissions in the life cycle of biofuels: regulations vs science. Biofuels Bioprod Biorefin 3:318–328. CrossRefGoogle Scholar
  65. 65.
    Van der Weijde T, Alvim Kamei CL, Torres AF, Vermerris W, Dolstra O, Visser RGF, Trindade LM (2013) The potential of C4 grasses for cellulosic biofuel production. Front Plant Sci 4:1–18. Google Scholar
  66. 66.
    Vermerris W (2011) Survey of genomics approaches to improve bioenergy traits in maize, sorghum and sugarcane. J Integr Plant Biol 53:105–119. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Microbiology & Cell Science – IFASUniversity of FloridaGainesvilleUSA
  2. 2.UF Stan Mayfield Biorefinery Pilot PlantUniversity of FloridaPerryUSA
  3. 3.Sanquin Plasma ProductsAmsterdamThe Netherlands
  4. 4.CargillEddyvilleUSA
  5. 5.UF Genetics InstituteUniversity of FloridaGainesvilleUSA

Personalised recommendations