Skip to main content

Advertisement

Log in

Subcritical Water Hydrolysis of Microalgal Biomass for Protein and Pyrolytic Bio-oil Recovery

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Microalgae are a promising source of protein and biofuels. This study involved the extraction of soluble proteins from raw microalgae using subcritical water hydrolysis followed by pyrolysis of the resulting spent microalgal biomass for bio-oil production. The extraction process produced solubilized protein in amounts up to 10 wt% of the dry biomass. The effects of hydrolysis temperature (150–220 °C), process time (90–180 min), and initial pH (2–12) on the chemical compositions and reactivity of the spent biomass as biofuel intermediates were investigated. It was found that when the temperature and time increased, the protein and carbohydrate fractions of the spent biomass were reduced, while their lipid fraction increased. A low initial pH led to lower protein content in the spent biomass. Compared with the raw microalgae, the spent biomass gave a higher yield of pyrolytic bio-oil that contained much less of the N-containing compounds and higher amounts of long-chain fatty acids (C16) and C14–C20 long-chain hydrocarbons. In addition, enhanced energy recovery and a reduction in the energy consumption of the pyrolysis process were the other benefits acquired from the protein extraction. Therefore, subcritical water hydrolysis was considered to be an effective process to recover solubilized proteins, enhance the properties of the spent biomass, improve the energy balance of the subsequent pyrolysis process, and raise the quality of the bio-oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HTL:

Hydrothermal liquefaction

TCA:

Trichloroacetic acid

BSA:

Bovine serum albumin

ICP-OES:

Inductively coupled plasma-optimal emission spectrometer

HHV:

High heating value

TGA:

Thermogravimetric analysis

DTG:

Derivative thermogravimetric

GC-MS:

Gas chromatography-mass spectrometry

K w :

Ion product constant

ECR:

Energy consumption ratio

ER:

Energy recovery

W i :

Initial water content of microalgal slurry prior to pyroysis conversion

T :

Temperature increase

C pw :

Specific heat of water

C pb :

Specific heat of biomass

R h :

Efficiency of heat recovery

R c :

Efficiency of combustion energy

Y bio-oil :

Bio-oil yield

HHVbio-oil :

Higher heating value of the bio-oil

L vap :

Latent heat of volatilization of water

References

  1. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. doi:10.1016/j.biotechadv.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  2. Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24(4):815–820. doi:10.1021/bp070371k

    CAS  PubMed  Google Scholar 

  3. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bio Energy Res 1(1):20–43. doi:10.1007/s12155-008-9008-8

    Google Scholar 

  4. Miao X, Wu Q, Yang CJ (2004) Fast pyrolysis of microalgae to produce renewable fuels. Anal Appl Pyrolysis 71(2):855–863. doi:10.1016/j.jaap.2003.11.004

    Article  CAS  Google Scholar 

  5. John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102(1):186–193. doi:10.1016/j.biortech.2010.06.139

    Article  CAS  PubMed  Google Scholar 

  6. Lee CM, Hung GJ, Yang CF (2011) Hydrogen production by Rhodopseudomonas palustris WP3-5 in a serial photobioreactor fed with hydrogen fermentation effluent. Bioresour Technol 102(18):8350–8356. doi:10.1016/j.biortech.2011.04.072

    Article  CAS  PubMed  Google Scholar 

  7. Borowitzka MA (2013) High-value products from microalgae-their development and commercialization. J Appl Phycol 25(3):743–756. doi:10.1007/s10811-013-9983-9

    Article  CAS  Google Scholar 

  8. Zhu L (2015) Biorefinery as a promising approach to promote microalgae industry: an innovative framework. Renew Sust Energy Rev 41:1376–1384. doi:10.1016/j.rser.2014.09.040

    Article  Google Scholar 

  9. Lamoolphak W, Goto M, Sasaki M, Suphantharika M, Moangnapoh C, Prommuag C et al (2006) Hydrothermal decomposition of yeast cells for production of proteins and amino acids. J Hazard Mater 137(3):1643–1648. doi:10.1016/j.jhazmat.2006.05.029

    Article  CAS  PubMed  Google Scholar 

  10. Sereewatthanawut I, Prapintip S, Watchiraruji K, Goto M, Sasaki M, Shotipruk A (2008) Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis. Bioresour Technol 99(3):555–561. doi:10.1016/j.biortech.2006.12.030

    Article  CAS  PubMed  Google Scholar 

  11. Quitain AT, Daimon H, Fujie K, Katoh S, Moriyoshi T (2006) Microwave-assisted hydrothermal degradation of silk protein to amino acids. Ind Eng Chem Res 45(13):4471–4474. doi:10.1021/ie0580699

    Article  CAS  Google Scholar 

  12. Xia N, Wang S, Yang X, Yin S, Qi J, Hu L et al (2012) Preparation and characterization of protein from heat-stabilized rice bran using hydrothermal cooking combined with amylase pretreatment. J Food Eng 110(1):95–101. doi:10.1016/j.jfoodeng.2011.12.004

    Article  CAS  Google Scholar 

  13. Yoshida H, Terashima M, Takahashi Y (1999) Production of organic acids and amino acids from fish meat by sub-critical water hydrolysis. Biotechnol Prog 15(6):1090–1094. doi:10.1021/bp9900920

    Article  CAS  PubMed  Google Scholar 

  14. Reddy HK, Muppaneni T, Ponnusamy S, Sudasinghe N, Pegallapati A, Selvaratnam T, Seger M, Dungan B, Nirmalakhandan N (2016) Temperature effect on hydrothermal liquefaction of Nannochloropsis gaditana and Chlorella sp. Appl Energy 165:943–951. doi:10.1016/j.apenergy.2015.11.067

    Article  CAS  Google Scholar 

  15. Zhou D, Zhang L, Zhang S, Fu H, Chen J (2010) Hydrothermal liquefaction of macroalgae Enteromorpha prolifera to bio-oil. Energ Fuel 27:1391–1398. doi:10.1021/ef100151h

    Google Scholar 

  16. Toor SS, Reddy H, Deng S, Hoffmann J, Spangsmark D, Madsen LB, Holm-Nielsen JB, Rosendahl LA (2013) Hydrothermal liquefaction of Spirulina and Nannochloropsis salina under subcritical and supercritical water conditions. Bioresour Technol 131:413–419. doi:10.1016/j.biortech.2012.12.144

    Article  CAS  PubMed  Google Scholar 

  17. Faeth JL, Valdez PJ, Savage PE (2013) Fast hydrothermal liquefaction of Nannochloropsis sp. to produce biocrude. Energ Fuel 27(3):1391–1398. doi:10.1021/ef301925d

    Article  CAS  Google Scholar 

  18. Xu D, Savage PD (2015) Effect of reaction time and algae loading on water-soluble and insoluble biocrude fractions from hydrothermal liquefaction of algae. Algal Res 12:60–67. doi:10.1016/j.algal.2015.08.005

    Article  Google Scholar 

  19. Garcia-Moscoso JL, Teymouri A, Kumar S (2015) Kinetics of peptides and arginine production from microalgae (Scenedesmus sp.) by flash hydrolysis. Ind Eng Chem Res 54(7):2048–2058. doi:10.1021/ie5047279

    Article  CAS  Google Scholar 

  20. Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sust Energ Rev 4(1):1–73. doi:10.1016/S1364-0321(99)00007-6

    Article  CAS  Google Scholar 

  21. Fagernäs L, Kuoppala E, Tiilikkala K, Oasmaa A (2012) Chemical composition of birch wood slow pyrolysis products. Energ Fuel 26:1275–1283. doi:10.1021/ef2018836

    Article  Google Scholar 

  22. Jayaraman K, Gökalp I (2015) Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge. Energy Convers Manag 89:83–91. doi:10.1016/j.enconman.2014.09.058

    Article  CAS  Google Scholar 

  23. Henrich E, Dahmen N, Weirich F, Reimert R, Kornmayer C (2016) Fast pyrolysis of lignocellulosics in a twin screw mixer reactor. Fuel Process Technol 143:151–161. doi:10.1016/j.fuproc.2015.11.003

    Article  CAS  Google Scholar 

  24. Lappa E, Christensen PS, Klemmer M, Becker J, Iversen BB (2016) Hydrothermal liquefaction of Miscanthus × Giganteus: preparation of the ideal feedstock. Biomass Bioenergy 87:17–25. doi:10.1016/j.biombioe.2016.02.008

    Article  CAS  Google Scholar 

  25. Barreiro DL, Gómez BR, Hornung U, Kruse A, Prins W (2015) Hydrothermal liquefaction of microalgae in a continuous stirred-tank reactor. Energy Fuel 29(10):6422–6432. doi:10.1021/acs.energyfuels.5b02099

    Article  CAS  Google Scholar 

  26. Jazrawi C, Biller P, He Y, Montoya A, Ross AB, Maschmeyer T et al (2015) Two-stage hydrothermal liquefaction of a high-protein microalga. Algal Res 8:15–22. doi:10.1016/j.algal.2014.12.010

    Article  Google Scholar 

  27. Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94. doi:10.1016/j.biombioe.2011.01.048

    Article  CAS  Google Scholar 

  28. Moheimani NR, Borowitzka MA, Isdepsky A, Sing SF (2013) Standard methods for measuring growth of algae and their composition. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Netherlands, pp 265–284

    Chapter  Google Scholar 

  29. Mecozzi M (2005) Estimation of total carbohydrate amount in environmental samples by the phenol-sulphuric acid method assisted by multivariate calibration. Chemom Intell Lab Syst 79(1–2):84–90. doi:10.1016/j.chemolab.2005.04.005

    Article  CAS  Google Scholar 

  30. Smedes F, Thomasen TK (1996) Evaluation of the Bligh & Dyer lipid determination method. Mar Pollut Bull 32(8):681–688. doi:10.1016/0025-326X(96)00079-3

    Article  CAS  Google Scholar 

  31. Friedl A, Padouvas E, Roter H, Varmuza K (2005) Prediction of heating values of biomass fuels from elemental composition. Anal Chim Acta 544(1–2):191–198. doi:10.1016/j.aca.2005.01.041

    Article  CAS  Google Scholar 

  32. Ursu A-V, Marcati A, Sayd T, Sante-Lhoutellier V, Djelveh G, Michaud P (2014) Extraction, fractionation and functional properties of proteins from the microalgae Chlorella vulgaris. Bioresour Technol 157:134–139. doi:10.1016/j.biortech.2014.01.071

    Article  CAS  PubMed  Google Scholar 

  33. Zanzi R, Sjöström K, Björnborn E (2002) Rapid pyrolysis of agricultural residues at high temperature. Biomass Bioenergy 23(5):357–366. doi:10.1016/S0961-9534(02)00061-2

    Article  CAS  Google Scholar 

  34. Fagbemi L, Khezami L, Capart R (2001) Pyrolysis products from different biomasses: application to the thermal cracking of tar. Appl Energy 69(4):293–306. doi:10.1016/S0306-2619(01)00013-7

    Article  CAS  Google Scholar 

  35. Ross AB, Anastasakis K, Kubacki M, Jones JM (2009) Investigation of the pyrolysis behavior of brown algae before and after pre-treatment using PY-GC/MS and TGA. J Anal Appl Pyrolysis 85(1–2):3–10. doi:10.1016/j.jaap.2008.11.004

    Article  CAS  Google Scholar 

  36. Rattanapoltee P, Kaewkannetra P (2014) Cultivation of microalga, Chlorella vulgaris under different auto-hetero-mixo trophic growths as a raw material during biodiesel production and cost evaluation. Energy 78:4–8. doi:10.1016/j.energy.2014.06.049

    Article  CAS  Google Scholar 

  37. Ross AB, Jones JM, Kubacki ML, Bridgeman T (2008) Classification of macroalgae as fuel and its thermochemical behavior. Bioresour Technol 99(14):6494–6504. doi:10.1016/j.biortech.2007.11.036

    Article  CAS  PubMed  Google Scholar 

  38. Yan X, Jin F, Tohji K, Kishita A, Enomoto H (2010) Hydrothermal conversion of carbohydrate biomass to lactic acid. AICHE J 56(10):2727–2733. doi:10.1002/aic.12193

    Article  CAS  Google Scholar 

  39. Nagamori M, Funazukuri T (2004) Glucose production by hydrolysis of starch under hydrothermal conditions. J Chem Technol Biotechnol 79(3):229–233. doi:10.1002/jctb.976

    Article  CAS  Google Scholar 

  40. Watchararuji K, Goto M, Sasaki M, Shotipruk A (2008) Value-added subcritical water hydrolysate from rice bran and soybean meal. Bioresour Technol 99(14):6207–6213. doi:10.1016/j.biortech.2007.12.021

    Article  CAS  PubMed  Google Scholar 

  41. Toor SS, Rosendahl L, Rudolf A (2011) Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36(5):2328–2342. doi:10.1016/j.energy.2011.03.013

    Article  CAS  Google Scholar 

  42. Garcia-Moscoso JL, Obeid W, Kumar S, Hatcher PG (2013) Flash hydrolysis of microalgae (Scenedesmus sp.) for protein extraction and production of biofuels intermediates. J Supercrit Fluids 82:183–190. doi:10.1016/j.supflu.2013.07.012

    Article  CAS  Google Scholar 

  43. Yu Y, Lou X, Wu H (2008) Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods. Energ Fuel 22(1):46–60. doi:10.1021/ef700292p

    Article  CAS  Google Scholar 

  44. Yuan XZ, Tong JY, Zeng GM, Li H, Xie W (2009) Comparative studies of products obtained at different temperatures during straw liquefaction by hot compressed water. Energ Fuel 23(6):3262–3267. doi:10.1021/ef900027d

    Article  CAS  Google Scholar 

  45. Rogalinski T, Liu K, Albrecht T, Brunner G (2008) Hydrolysis kinetics of biopolymers in subcritical water. J Supercrit Fluids 46(3):335–341. doi:10.1016/j.supflu.2007.09.037

    Article  CAS  Google Scholar 

  46. Asghari FS, Yoshida H (2006) Acid-catalyzed production of 5-hydroxymethyl furfural from D-fructose in subcritical water. Ind Eng Chem Res 45(7):2163–2173. doi:10.1021/ie051088y

    Article  CAS  Google Scholar 

  47. Watanabe M, Iida T, Inomata H (2006) Decomposition of a long chain saturated fatty acid with some additives in hot compressed water. Energy Convers Manag 47(18–19):3344–3350. doi:10.1016/j.enconman.2006.01.009

    Article  CAS  Google Scholar 

  48. Phusunti P (2012) Pyrolytic and kinetic study of Chlorella vulgaris under isothermal and non-isothermal conditions. Dissertation, Aston University

  49. Babich IV, Van der Hulst M, Lefferts L, Moulijn JA, O’Connor P, Seshan K (2011) Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass Bioenergy 35(7):3199–3207. doi:10.1016/j.biombioe.2011.04.043

    Article  CAS  Google Scholar 

  50. Pan P, Hu C, Yang W, Li Y, Dong L, Zhu L et al (2010) The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. Bioresour Technol 101(12):4593–4599. doi:10.1016/j.biortech.2010.01.070

    Article  CAS  PubMed  Google Scholar 

  51. Haarlemmer G, Guizani C, Anouti S, Déniel M, Roubaud A, Valin S (2016) Analysis and comparison of bio-oils obtained by hydrothermal liquefaction and fast pyrolysis of beech wood. Fuel 174:180–188. doi:10.1016/j.fuel.2016.01.082

    Article  CAS  Google Scholar 

  52. Cardoso CAL, Machado ME, Caramão EB (2016) Characterization of bio-oils obtained from pyrolysis of bocaiuva residues. Renew Energ 91:21–31. doi:10.1016/j.renene.2015.11.086

    Article  CAS  Google Scholar 

  53. Miao C, Chakraborty M, Chen S (2012) Impact of reaction conditions on the simultaneous production of polysaccharides and bio-oil from heterophically grown Chlorella sorokiniana by a unique sequential hydrothermal liquefaction process. Bioresour Technol 110:617–627. doi:10.1016/j.biortech.2012.01.047

    Article  CAS  PubMed  Google Scholar 

  54. Vardon DR, Sharma BK, Blazina GV, Rajagopalan K, Strathmann TJ (2012) Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour Technol 109:178–187. doi:10.1016/j.biortech.2012.01.008

    Article  CAS  PubMed  Google Scholar 

  55. Minowa T, Kondo T, Sudirjo ST (1998) Thermochemical liquefaction of Indonesian biomass residues. Biomass Bioenergy 14(5–6):517–524. doi:10.1016/S0961-9534(98)00006-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Prince of Songkla University, contract no. SCI570531S. Also, thanks to Dr. Brian Hodgson and Mr.Thomas Coyne for assistance with the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeranuch Phusunti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phusunti, N., Phetwarotai, W., Tirapanampai, C. et al. Subcritical Water Hydrolysis of Microalgal Biomass for Protein and Pyrolytic Bio-oil Recovery. Bioenerg. Res. 10, 1005–1017 (2017). https://doi.org/10.1007/s12155-017-9859-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-017-9859-y

Keywords

Navigation