Agronomic Evaluation of Camelina (Camelina sativa L. Crantz) Cultivars for Biodiesel Feedstock

Abstract

Recent interest in renewable energy sources and the need to diversify cropping systems have triggered research interest in camelina (Camelina sativa L. Crantz). Camelina is well adapted to the temperate dryland climates and can be used as an energy crop. But information on agronomic evaluation of camelina cultivars for biodiesel feedstock are limited. The objective of this study was to evaluate six spring camelina cultivars (cv. Blaine Creek, Calena, Ligena, Pronghorn, Shoshone, and Suneson) on seed yield, oil concentration, and oil yield. The study was carried out from 2013 to 2015 at three locations (Havre, Moccasin, and Pendroy, MT). Over locations and years, mean seed yield differences among cultivars were significant (P < 0.05). The mean seed yield for cultivars ranging from 1295 kg ha−1 (Suneson) to 1420 kg ha−1 (Ligena). Ligena and Calena showed a combination of good seed yield performance and stability across environments. Environmental means for seed yield differences were substantial compared with cultivar means. The location Havre produced 45 and 32% more mean seed yield than Pendroy and Moccasin, respectively. There was no significant difference among cultivars in oil concentration and oil yield. The absence of variations in oil concentration and oil yield differences among these cultivars could indicate the need for further research to improve these qualities essential for biodiesel.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    McVay K, Khan Q (2011) Camelina yield response to different plant populations under dryland conditions. Agron J 103(4):1265–1269. doi:10.2134/agronj2011.0057

    Article  Google Scholar 

  2. 2.

    Gugel R, Falk K (2006) Agronomic and seed quality evaluation of Camelina sativa in western Canada. Can J Plant Sci 86(4):1047–1058. doi:10.4141/P04-081

    Article  Google Scholar 

  3. 3.

    Robinson R (1987) Camelina: a useful research crop and a potential oilseed crop. Minnesota Agricultural Experiment Station

  4. 4.

    Guy SO, Wysocki DJ, Schillinger WF, Chastain TG, Karow RS, Garland-Campbell K, Burke IC (2014) Camelina: adaptation and performance of genotypes. Field Crop Res 155:224–232. doi:10.1016/j.fcr.2013.09.002

    Article  Google Scholar 

  5. 5.

    USDA (2010) A USDA regional roadmap to meeting the biofuels goals of the renewable fuels standard by 2022. USDA Biofuels Strategic Production Report, USA. USA

  6. 6.

    Pinzi S, Garcia I, Lopez-Gimenez F, Luque de Castro M, Dorado G, Dorado M (2009) The ideal vegetable oil-based biodiesel composition: a review of social, economical and technical implications. Energy Fuel 23(5):2325–2341. doi:10.1021/ef801098a

    CAS  Article  Google Scholar 

  7. 7.

    Bernardo A, Howard-Hildige R, O’Connell A, Nichol R, Ryan J, Rice B, Roche E, Leahy J (2003) Camelina oil as a fuel for diesel transport engines. Ind Crop Prod 17(3):191–197. doi:10.1016/ S0926-6690(02)00098-5

    CAS  Article  Google Scholar 

  8. 8.

    Shonnard DR, Williams L, Kalnes TN (2010) Camelina-derived jet fuel and diesel: sustainable advanced biofuels. Prog Sustain Energy 29(3):382–392. doi:10.1002/ep.10461

    CAS  Article  Google Scholar 

  9. 9.

    Blackshaw R, Johnson E, Gan Y, May W, McAndrew D, Barthet V, McDonald T, Wispinski D (2011) Alternative oilseed crops for biodiesel feedstock on the Canadian prairies. Can J Plant Sci 91(5):889–896. doi:10.4141/cjps2011-002

    Article  Google Scholar 

  10. 10.

    Zubr J (1997) Oil-seed crop: Camelina sativa. Ind Crop Prod 6(2):113–119. doi:10.1016/S0926-6690(96)00203-8

    Article  Google Scholar 

  11. 11.

    Wysocki DJ, Chastain TG, Schillinger WF, Guy SO, Karow RS (2013) Camelina: seed yield response to applied nitrogen and sulfur. Field Crops Res 145:60–66. doi:10.1016/j.fcr.2013.02.009

    Article  Google Scholar 

  12. 12.

    Jackson GD (2008) Response of camelina to nitrogen, phosphorus and sulfur. Fertilizer Facts: Number 49. vol 49. Montana State University

  13. 13.

    Mohammed YA, Chen C, Afshar RK (2017) Nutrient requirements of camelina for biodiesel feedstock in central Montana. Agron J 109(1):309–316. doi:10.2134/agronj2016.03.0163

    Article  Google Scholar 

  14. 14.

    Vollmann J, Moritz T, Kargl C, Baumgartner S, Wagentristl H (2007) Agronomic evaluation of camelina genotypes selected for seed quality characteristics. Ind Crop Prod 26(3):270–277. doi:10.1016/j.indcrop.2007.03.017

    CAS  Article  Google Scholar 

  15. 15.

    Gesch RW (2014) Influence of genotype and sowing date on camelina growth and yield in the north central US. Ind Crop Prod 54:209–215. doi:10.1016/j.indcrop.2014.01.034

    Article  Google Scholar 

  16. 16.

    Wysocki D, Sirovatka N (2008) Camelina, a potential oilseed crop for semiarid Oregon. 2008 Dryland Agricultural Research Annual Report. Oregon State University Agricultural Experiment Station and USDA ARS

  17. 17.

    Urbaniak S, Caldwell C, Zheljazkov V, Lada R, Luan L (2008) The effect of cultivar and applied nitrogen on the performance of Camelina sativa L. in the maritime provinces of Canada. Can J Plant Sci 88(1):111–119. doi:10.4141/CJPS07115

    CAS  Article  Google Scholar 

  18. 18.

    NASS (2013) Camelina acreage, yield and production, Montana, USA. National Agricultural Statistics Service. http://www.nass.usda.gov/statistics_by_state/Montana. Accessed May 31 2016

  19. 19.

    Mohammed YA, Chen C, Jensen T (2015) Urease and nitrification inhibitors impact on winter wheat fertilizer timing, yield, and protein content. Agron J. doi:10.2134/agronj2015.0391

  20. 20.

    Levene H (1960) Robust tests for the quality of variance. Contribution to probability and statistics. Stanford Uni.Press, Palo Alto

    Google Scholar 

  21. 21.

    SAS (2001) SAS/STAT guide. SAS Inst. Inc., Cary

    Google Scholar 

  22. 22.

    Pacheo A, Vargas M, Alvarado G, Rodriguez F, Lopez M, Crossa J, Burgueno J (2015) GEA-R (Genotype x environment analysis with R for windows) Version 2.0. 2.0 edn. International Maize and Wheat Improvment Center.,

  23. 23.

    Mohammed YA, Chen C, Lee D (2014) Harvest time and nitrogen fertilization to improve bioenergy feedstock yield and quality. Agron J 106(1):57–65. doi:10.2134/agronj2013.0272

    Article  Google Scholar 

  24. 24.

    Mohammed YA, Raun W, Kakani G, Zhang H, Taylor R, Desta KG, Jared C, Mullock J, Bushong J, Sutradhar A, Ali MS, Reinert M (2015) Nutrient sources and harvesting frequency on quality biomass production of switchgrass (Panicum virgatum L.) for biofuel. Biomass Bioenergy 81:242–248. doi:10.1016/j.biombioe.2015.06.027

    CAS  Article  Google Scholar 

  25. 25.

    Gesch R, Cermak S (2011) Sowing date and tillage effects on fall-seeded camelina in the northern corn belt. Agron J 103(4):980–987. doi:10.2134/agronj2010.0485

    Article  Google Scholar 

Download references

Acknowledgments

The source of funding for this experiment was the USDA-BRDI Program (Grant#2012-10006-20230).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yesuf Assen Mohammed.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohammed, Y.A., Chen, C., Lamb, P. et al. Agronomic Evaluation of Camelina (Camelina sativa L. Crantz) Cultivars for Biodiesel Feedstock. Bioenerg. Res. 10, 792–799 (2017). https://doi.org/10.1007/s12155-017-9840-9

Download citation

Keywords

  • Biodiesel
  • Biofuel
  • Camelina
  • Oil yield
  • Stability