BioEnergy Research

, Volume 10, Issue 3, pp 792–799 | Cite as

Agronomic Evaluation of Camelina (Camelina sativa L. Crantz) Cultivars for Biodiesel Feedstock

  • Yesuf Assen Mohammed
  • Chengci Chen
  • Peggy Lamb
  • Reza Keshavarz Afshar


Recent interest in renewable energy sources and the need to diversify cropping systems have triggered research interest in camelina (Camelina sativa L. Crantz). Camelina is well adapted to the temperate dryland climates and can be used as an energy crop. But information on agronomic evaluation of camelina cultivars for biodiesel feedstock are limited. The objective of this study was to evaluate six spring camelina cultivars (cv. Blaine Creek, Calena, Ligena, Pronghorn, Shoshone, and Suneson) on seed yield, oil concentration, and oil yield. The study was carried out from 2013 to 2015 at three locations (Havre, Moccasin, and Pendroy, MT). Over locations and years, mean seed yield differences among cultivars were significant (P < 0.05). The mean seed yield for cultivars ranging from 1295 kg ha−1 (Suneson) to 1420 kg ha−1 (Ligena). Ligena and Calena showed a combination of good seed yield performance and stability across environments. Environmental means for seed yield differences were substantial compared with cultivar means. The location Havre produced 45 and 32% more mean seed yield than Pendroy and Moccasin, respectively. There was no significant difference among cultivars in oil concentration and oil yield. The absence of variations in oil concentration and oil yield differences among these cultivars could indicate the need for further research to improve these qualities essential for biodiesel.


Biodiesel Biofuel Camelina Oil yield Stability 



The source of funding for this experiment was the USDA-BRDI Program (Grant#2012-10006-20230).


  1. 1.
    McVay K, Khan Q (2011) Camelina yield response to different plant populations under dryland conditions. Agron J 103(4):1265–1269. doi: 10.2134/agronj2011.0057 CrossRefGoogle Scholar
  2. 2.
    Gugel R, Falk K (2006) Agronomic and seed quality evaluation of Camelina sativa in western Canada. Can J Plant Sci 86(4):1047–1058. doi: 10.4141/P04-081 CrossRefGoogle Scholar
  3. 3.
    Robinson R (1987) Camelina: a useful research crop and a potential oilseed crop. Minnesota Agricultural Experiment StationGoogle Scholar
  4. 4.
    Guy SO, Wysocki DJ, Schillinger WF, Chastain TG, Karow RS, Garland-Campbell K, Burke IC (2014) Camelina: adaptation and performance of genotypes. Field Crop Res 155:224–232. doi: 10.1016/j.fcr.2013.09.002 CrossRefGoogle Scholar
  5. 5.
    USDA (2010) A USDA regional roadmap to meeting the biofuels goals of the renewable fuels standard by 2022. USDA Biofuels Strategic Production Report, USA. USAGoogle Scholar
  6. 6.
    Pinzi S, Garcia I, Lopez-Gimenez F, Luque de Castro M, Dorado G, Dorado M (2009) The ideal vegetable oil-based biodiesel composition: a review of social, economical and technical implications. Energy Fuel 23(5):2325–2341. doi: 10.1021/ef801098a CrossRefGoogle Scholar
  7. 7.
    Bernardo A, Howard-Hildige R, O’Connell A, Nichol R, Ryan J, Rice B, Roche E, Leahy J (2003) Camelina oil as a fuel for diesel transport engines. Ind Crop Prod 17(3):191–197. doi: 10.1016/ S0926-6690(02)00098-5 CrossRefGoogle Scholar
  8. 8.
    Shonnard DR, Williams L, Kalnes TN (2010) Camelina-derived jet fuel and diesel: sustainable advanced biofuels. Prog Sustain Energy 29(3):382–392. doi: 10.1002/ep.10461 CrossRefGoogle Scholar
  9. 9.
    Blackshaw R, Johnson E, Gan Y, May W, McAndrew D, Barthet V, McDonald T, Wispinski D (2011) Alternative oilseed crops for biodiesel feedstock on the Canadian prairies. Can J Plant Sci 91(5):889–896. doi: 10.4141/cjps2011-002 CrossRefGoogle Scholar
  10. 10.
    Zubr J (1997) Oil-seed crop: Camelina sativa. Ind Crop Prod 6(2):113–119. doi: 10.1016/S0926-6690(96)00203-8 CrossRefGoogle Scholar
  11. 11.
    Wysocki DJ, Chastain TG, Schillinger WF, Guy SO, Karow RS (2013) Camelina: seed yield response to applied nitrogen and sulfur. Field Crops Res 145:60–66. doi: 10.1016/j.fcr.2013.02.009 CrossRefGoogle Scholar
  12. 12.
    Jackson GD (2008) Response of camelina to nitrogen, phosphorus and sulfur. Fertilizer Facts: Number 49. vol 49. Montana State UniversityGoogle Scholar
  13. 13.
    Mohammed YA, Chen C, Afshar RK (2017) Nutrient requirements of camelina for biodiesel feedstock in central Montana. Agron J 109(1):309–316. doi: 10.2134/agronj2016.03.0163 CrossRefGoogle Scholar
  14. 14.
    Vollmann J, Moritz T, Kargl C, Baumgartner S, Wagentristl H (2007) Agronomic evaluation of camelina genotypes selected for seed quality characteristics. Ind Crop Prod 26(3):270–277. doi: 10.1016/j.indcrop.2007.03.017 CrossRefGoogle Scholar
  15. 15.
    Gesch RW (2014) Influence of genotype and sowing date on camelina growth and yield in the north central US. Ind Crop Prod 54:209–215. doi: 10.1016/j.indcrop.2014.01.034 CrossRefGoogle Scholar
  16. 16.
    Wysocki D, Sirovatka N (2008) Camelina, a potential oilseed crop for semiarid Oregon. 2008 Dryland Agricultural Research Annual Report. Oregon State University Agricultural Experiment Station and USDA ARSGoogle Scholar
  17. 17.
    Urbaniak S, Caldwell C, Zheljazkov V, Lada R, Luan L (2008) The effect of cultivar and applied nitrogen on the performance of Camelina sativa L. in the maritime provinces of Canada. Can J Plant Sci 88(1):111–119. doi: 10.4141/CJPS07115 CrossRefGoogle Scholar
  18. 18.
    NASS (2013) Camelina acreage, yield and production, Montana, USA. National Agricultural Statistics Service. Accessed May 31 2016
  19. 19.
    Mohammed YA, Chen C, Jensen T (2015) Urease and nitrification inhibitors impact on winter wheat fertilizer timing, yield, and protein content. Agron J. doi: 10.2134/agronj2015.0391
  20. 20.
    Levene H (1960) Robust tests for the quality of variance. Contribution to probability and statistics. Stanford Uni.Press, Palo AltoGoogle Scholar
  21. 21.
    SAS (2001) SAS/STAT guide. SAS Inst. Inc., CaryGoogle Scholar
  22. 22.
    Pacheo A, Vargas M, Alvarado G, Rodriguez F, Lopez M, Crossa J, Burgueno J (2015) GEA-R (Genotype x environment analysis with R for windows) Version 2.0. 2.0 edn. International Maize and Wheat Improvment Center.,Google Scholar
  23. 23.
    Mohammed YA, Chen C, Lee D (2014) Harvest time and nitrogen fertilization to improve bioenergy feedstock yield and quality. Agron J 106(1):57–65. doi: 10.2134/agronj2013.0272 CrossRefGoogle Scholar
  24. 24.
    Mohammed YA, Raun W, Kakani G, Zhang H, Taylor R, Desta KG, Jared C, Mullock J, Bushong J, Sutradhar A, Ali MS, Reinert M (2015) Nutrient sources and harvesting frequency on quality biomass production of switchgrass (Panicum virgatum L.) for biofuel. Biomass Bioenergy 81:242–248. doi: 10.1016/j.biombioe.2015.06.027 CrossRefGoogle Scholar
  25. 25.
    Gesch R, Cermak S (2011) Sowing date and tillage effects on fall-seeded camelina in the northern corn belt. Agron J 103(4):980–987. doi: 10.2134/agronj2010.0485 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Yesuf Assen Mohammed
    • 1
  • Chengci Chen
    • 1
  • Peggy Lamb
    • 2
  • Reza Keshavarz Afshar
    • 1
  1. 1.Eastern Agricultural Research CenterMontana State UniversitySidneyUSA
  2. 2.Northern Agricultural Research CenterMontana State UniversityHavreUSA

Personalised recommendations