Fertilization of Willow Coppice Over Three Consecutive 2-Year Rotations—Effects on Biomass Production, Soil Nutrients and Water

Abstract

Short rotation coppice (SRC) willow is a promising bioenergy feedstock. Fertilization is an integrated part of the production system, but knowledge about the effects in consecutive rotations is scarce. The objective of this study was to identify an appropriate fertilization regime for achieving high yields, reducing risks of nutrient leaching and maintaining the soil nutrient stocks in SRC willow on a former arable land. Ten different fertilization treatments were applied, with different application frequencies, fertilizer types and doses over three consecutive 2-year rotations. The biomass production was determined at harvest, soil solution samples were collected monthly, water fluxes were modelled using CoupModel and nutrient budgets were calculated. The unfertilized control had a mean biomass production of 8.3, 8.3 and 9.5 odt ha−1 year−1, respectively, in the three rotations. This indicated that nutrients were adequately available to maintain production for at least 6 years without fertilization. When adding 60 kg N ha−1 year−1, biomass production tended to be higher than the control, by 33% (p = 0.055), and the treatment where 360 kg N ha−1 rotation−1 was added, by 31% (p = 0.08). Treatments with one-time addition of 240 and 360 kg N ha−1 rotation−1 had significantly higher nitrogen leaching than all other treatments. Organic fertilizers did not increase biomass production nor N leaching significantly compared to the control, but nutrient budgets indicated a nutrient build-up in the soil. We concluded that application of 60 kg N ha−1 year−1 is recommendable, for achieving high biomass yields, low nitrogen leaching and maintenance of the soil nutrient stock.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    AEBIOM (2015) Statistical report 2015- Key findings 10–28

  2. 2.

    de Wit M, Faaij A (2010) European biomass resource potential and costs. Biomass Bioenergy 34(2):188–202. doi:10.1016/j.biombioe.2009.07.011

    Article  Google Scholar 

  3. 3.

    van Dam J, Faaij APC, Lewandowski I, Fischer G (2007) Biomass production potentials in central and eastern Europe under different scenarios. Biomass Bioenergy 31(6):345–366. doi:10.1016/j.biombioe.2006.10.001

    Article  Google Scholar 

  4. 4.

    Aust C, Schweier J, Brodbeck F, Sauter UH, Becker G, Schnitzler J-P (2014) Land availability and potential biomass production with poplar and willow short rotation coppices in Germany. GCB Bioenergy 6(5):521–533. doi:10.1111/gcbb.12083

    Article  Google Scholar 

  5. 5.

    Kaltschmitt M (2011) Biomass for energy in Germany status, perspectives and lessons learned. J Sustain Energy Environ Special Issue 1(10)

  6. 6.

    Perttu KL (1999) Environmental and hygienic aspects of willow coppice in Sweden. Biomass Bioenergy 16(4):291–297. doi:10.1016/s0961-9534(98)00012-9

    Article  Google Scholar 

  7. 7.

    Kopp RF, Abrahamson LP, White EH, Burns KF, Nowak CA (1997) Cutting cycle and spacing effects on biomass production by a willow clone in New York. Biomass Bioenergy 12(5):313–319. doi:10.1016/S0961-9534(96)00077-3

    Article  Google Scholar 

  8. 8.

    Labrecque M, Teodorescu TI (2003) High biomass yield achieved by Salix clones in SRIC following two 3-year coppice rotations on abandoned farmland in southern Quebec, Canada. Biomass Bioenergy 25(2):135–146. doi:10.1016/s0961-9534(02)00192-7

    Article  Google Scholar 

  9. 9.

    Mola-Yudego B, Aronsson P (2008) Yield models for commercial willow biomass plantations in Sweden. Biomass Bioenergy 32(9):829–837. doi:10.1016/j.biombioe.2008.01.002

    Article  Google Scholar 

  10. 10.

    Mola-Yudego B, Díaz-Yáñez O, Dimitriou I (2015) How much yield should we expect from fast-growing plantations for energy? Divergences between experiments and commercial willow plantations. Bioenerg Res 8(4):1769–1777. doi:10.1007/s12155-015-9630-1

    Article  Google Scholar 

  11. 11.

    Nord-Larsen T, Sevel L, Raulund-Rasmussen K (2014) Commercially grown short rotation coppice willow in Denmark: biomass production and factors affecting production. Bioenerg Res 8(1):325–339. doi:10.1007/s12155-014-9517-6

    Article  Google Scholar 

  12. 12.

    Sevel L, Nord-Larsen T, Raulund-Rasmussen K (2012) Biomass production of four willow clones grown as short rotation coppice on two soil types in Denmark. Biomass Bioenergy 46:664–672. doi:10.1016/j.biombioe.2012.06.030

    Article  Google Scholar 

  13. 13.

    Stolarski MJ, Szczukowski S, Tworkowski J, Klasa A (2011) Willow biomass production under conditions of low-input agriculture on marginal soils. For Ecol Manag 262(8):1558–1566. doi:10.1016/j.foreco.2011.07.004

    Article  Google Scholar 

  14. 14.

    Bergante S, Facciotto G, Minotta G (2010) Identification of the main site factors and management intensity affecting the establishment of short-rotation-coppices (SRC) in Northern Italy through stepwise regression analysis. Central European Journal of Biology 5(4):522–530. doi:10.2478/s11535-010-0028-y

    Google Scholar 

  15. 15.

    Wilkinson JM, Evans EJ, Bilsborrow PE, Wright C, Hewison WO, Pilbeam DJ (2007) Yield of willow cultivars at different planting densities in a commercial short rotation coppice in the north of England. Biomass Bioenergy 31(7):469–474. doi:10.1016/j.biombioe.2007.01.020

    Article  Google Scholar 

  16. 16.

    Bullard MJ, Mustill SJ, McMillan SD, Nixon PMI, Carver P, Britt CP (2002) Yield improvements through modification of planting density and harvest frequency in short rotation coppice Salix spp.—1. Yield response in two morphologically diverse varieties. Biomass Bioenergy 22(1):15–25. doi:10.1016/S0961-9534(01)00054-X

    Article  Google Scholar 

  17. 17.

    Larsen SU, Jørgensen U, Kjeldsen JB, Lærke PE (2014) Long-term yield effects of establishment method and weed control in willow for short rotation coppice (SRC). Biomass Bioenergy 71:266–274. doi:10.1016/j.biombioe.2014.10.001

    Article  Google Scholar 

  18. 18.

    Sage (1999) Weed competition in willow coppice crops: the cause and extent of yield losses. Weed Res 39(5):399–411. doi:10.1046/j.1365-3180.1999.00154.x

    Article  Google Scholar 

  19. 19.

    Schulz V, Gauder M, Seidl F, Nerlich K, Claupein W, Graeff-Hönninger S (2016) Impact of different establishment methods in terms of tillage and weed management systems on biomass production of willow grown as short rotation coppice. Biomass Bioenergy 85:327–334. doi:10.1016/j.biombioe.2015.12.017

    Article  Google Scholar 

  20. 20.

    Dickmann DI, Nguyen PV, Pregitzer KS (1996) Effects of irrigation and coppicing on above-ground growth, physiology, and fine-root dynamics of two field-grown hybrid poplar clones. For Ecol Manag 80(1–3):163–174. doi:10.1016/0378-1127(95)03611-3

    Article  Google Scholar 

  21. 21.

    Hangs RD, Schoenau JJ, Van Rees KCJ, Knight JD (2012) The effect of irrigation on nitrogen uptake and use efficiency of two willow (Salix spp.) biomass energy varieties. Can J Plant Sci 92(3):563–575. doi:10.4141/cjps2011-245

    CAS  Article  Google Scholar 

  22. 22.

    Stolarski M, Szczukowski S, Tworkowski J, Klasa A (2008) Productivity of seven clones of willow coppice in annual and quadrennial cutting cycles. Biomass Bioenergy 32(12):1227–1234. doi:10.1016/j.biombioe.2008.02.023

    Article  Google Scholar 

  23. 23.

    Larsen SU, Jørgensen U, Lærke PE (2014) Willow yield is highly dependent on clone and site. Bioenerg Res 7(4):1280–1292. doi:10.1007/s12155-014-9463-3

    Article  Google Scholar 

  24. 24.

    Larsen SU, Jørgensen U, Kjeldsen JB, Lærke PE (2016) Effect of fertilisation on biomass yield, ash and element uptake in SRC willow. Biomass Bioenergy 86:120–128. doi:10.1016/j.biombioe.2016.01.014

    CAS  Article  Google Scholar 

  25. 25.

    Stolarski MJ, Krzyżaniak M, Szczukowski S, Tworkowski J, Załuski D, Bieniek A, Gołaszewski J (2015) Effect of increased soil fertility on the yield and energy value of short-rotation Woody crops. Bioenerg Res 8(3):1136–1147. doi:10.1007/s12155-014-9567-9

    CAS  Article  Google Scholar 

  26. 26.

    Aronsson P, Rosenqvist H, Dimitriou I (2014) Impact of nitrogen fertilization to short-rotation willow coppice plantations grown in Sweden on yield and economy. Bioenerg Res 7(3):993–1001. doi:10.1007/s12155-014-9435-7

    CAS  Article  Google Scholar 

  27. 27.

    Quaye AK, Volk TA, Hafner S, Leopold DJ, Schirmer C (2011) Impacts of paper sludge and manure on soil and biomass production of willow. Biomass Bioenergy 35(7):2796–2806. doi:10.1016/j.biombioe.2011.03.008

    Article  Google Scholar 

  28. 28.

    Marron N (2015) Agronomic and environmental effects of land application of residues in short-rotation tree plantations: a literature review. Biomass Bioenergy 81:378–400. doi:10.1016/j.biombioe.2015.07.025

    Article  Google Scholar 

  29. 29.

    Labrecque M, Teodorescu TI, Daigle S (1998) Early performance and nutrition of two willow species in short-rotation intensive culture fertilized with wastewater sludge and impact on the soil characteristics. Can J For Res 28(11):1621–1635. doi:10.1139/x98-142

    Article  Google Scholar 

  30. 30.

    Adegbidi HG, Briggs RD, Volk TA, White EH, Abrahamson LP (2003) Effect of organic amendments and slow-release nitrogen fertilizer on willow biomass production and soil chemical characteristics. Biomass Bioenergy 25(4):389–398. doi:10.1016/S0961-9534(03)00038-2

    Article  Google Scholar 

  31. 31.

    Sevel L, Nord-Larsen T, Ingerslev M, Jorgensen U, Raulund-Rasmussen K (2014) Fertilization of SRC willow, I: biomass production response. Bioenerg Res 7(1):319–328

    CAS  Article  Google Scholar 

  32. 32.

    Hofmann-Schielle C, Jug A, Makeschin F, Rehfuess KE (1999) Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. I. Site-growth relationships. For Ecol Manag 121(1–2):41–55

    Article  Google Scholar 

  33. 33.

    Sevel L, Nord-Larsen T, Ingerslev M, Jorgensen U, Raulund-Rasmussen K (2014) Fertilization of SRC willow, II: leaching and element balances. Bioenerg Res 7(1):338–352

    CAS  Article  Google Scholar 

  34. 34.

    Matejovic I (1993) Determination of carbon, hydrogen, and nitrogen in soils by automated elemental analysis (dry combustion method). Commun Soil Sci Plant Anal 24(17–18):2213–2222. doi:10.1080/00103629309368950

    CAS  Article  Google Scholar 

  35. 35.

    Stef van Buuren KG-O (2011) MICE: Multivariate imputation by chained equations in R. J Stat Softw 45(3). doi:10.18637/jss.v045.i03

  36. 36.

    Jansson P-E, Karlberg L (2011) Coupled heat and mass transfer model for soil-plant-atmosphere systems. Royal Institute of Technology, Stockholm, p 484 available at: http://www.coupmodel.com/default.htm

    Google Scholar 

  37. 37.

    DMI (2015) Guide to Climate Data and Information from the Danish Meteorological Institute. 10, pp. 63

  38. 38.

    Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements. FAO Irrigation and Drainage, paper 56

  39. 39.

    Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363. doi:10.1002/bimj.200810425

    Article  PubMed  Google Scholar 

  40. 40.

    Guidi Nissim W, Pitre FE, Teodorescu TI, Labrecque M (2013) Long-term biomass productivity of willow bioenergy plantations maintained in southern Quebec, Canada. Biomass Bioenergy 56:361–369. doi:10.1016/j.biombioe.2013.05.020

    Article  Google Scholar 

  41. 41.

    Alriksson B, Ledin S, Seeger P (1997) Effect of nitrogen fertilization on growth in a Salix viminalis stand using a response surface experimental design. Scand J For Res 12(4):321–327. doi:10.1080/02827589709355418

    Article  Google Scholar 

  42. 42.

    Ericsson T (1994) Nutrient cycling in energy forest plantations. Biomass Bioenergy 6(1–2):115–121

    CAS  Article  Google Scholar 

  43. 43.

    Jug A, Hofmann-Schielle C, Makeschin F, Rehfuess KE (1999) Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. II. Nutritional status and bioelement export by harvested shoot axes. For Ecol Manag 121(1–2):67–83

    Article  Google Scholar 

  44. 44.

    Wang D, Xu Z, Zhao J, Wang Y, Yu Z (2011) Excessive nitrogen application decreases grain yield and increases nitrogen loss in a wheat–soil system. Acta Agr Scand B-S P 61(8):681–692. doi:10.1080/09064710.2010.534108

    Google Scholar 

  45. 45.

    Dimitriou I, Aronsson P (2004) Nitrogen leaching from short-rotation willow coppice after intensive irrigation with wastewater. Biomass Bioenergy 26(5):433–441. doi:10.1016/j.biombioe.2003.08.009

    CAS  Article  Google Scholar 

  46. 46.

    Rosenqvist H, Aronsson P, Hasselgren K, Perttu K (1997) Economics of using municipal wastewater irrigation of willow coppice crops. Biomass Bioenergy 12(1):1–8. doi:10.1016/S0961-9534(96)00058-X

    Article  Google Scholar 

  47. 47.

    Dimitriou I, Rosenqvist H (2011) Sewage sludge and wastewater fertilisation of short rotation coppice (SRC) for increased bioenergy production-biological and economic potential. Biomass Bioenergy 35(2):835–842

    Article  Google Scholar 

  48. 48.

    Dimitriou I, Aronsson P (2011) Wastewater and sewage sludge application to willows and poplars grown in lysimeters-plant response and treatment efficiency. Biomass Bioenergy 35(1):161–170

    CAS  Article  Google Scholar 

  49. 49.

    Dimitriou I, Aronsson P (2010) Landfill leachate treatment with willows and poplars—efficiency and plant response. Waste Manag 30(11):2137–2145

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported financially by the Strategic Research Council project BIORESOURCE (11-116725). We wish to thank the commercial willow farm Nordic Biomass for kindly hosting a well-established SRC willow field and support in several regards. We further want to thank Sebastian Kepfer-Rojas for his valuable support and interesting discussions on statistics. Lastly, we kindly thank Per-Erik Jansson and Per Eduard Robert Bjerager for their valuable input and assistance with the hydrological modelling (CoupModel).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Petros Georgiadis.

Electronic Supplementary Material

Fig. S1

(DOCX 16626 kb)

Table S1

(DOCX 31 kb)

Table S2

(DOCX 19 kb)

Table S3

(DOCX 85 kb)

Table S4

(DOCX 18 kb)

Table S5

(DOCX 27 kb)

Table S6

(DOCX 20 kb)

Table S7

(DOCX 35 kb)

Table S8

(DOCX 32 kb)

Table S9

(DOCX 35 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Georgiadis, P., Sevel, L., Raulund-Rasmussen, K. et al. Fertilization of Willow Coppice Over Three Consecutive 2-Year Rotations—Effects on Biomass Production, Soil Nutrients and Water. Bioenerg. Res. 10, 728–739 (2017). https://doi.org/10.1007/s12155-017-9834-7

Download citation

Keywords

  • Bioenergy
  • CoupModel
  • Leaching
  • Nutrient budgets
  • Over-fertilization
  • Soil fertility
  • Under-fertilization