Skip to main content

Advertisement

Log in

A Review of Holocellulase Production Using Pretreated Lignocellulosic Substrates

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The economic viability of enzyme-based lignocellulosic biomass biorefineries depends on the low cost of holocellulose-degrading enzymes necessary for decomposing biomass into fermentable sugars and other value-added products. The high costs of commercial enzymes and the high enzyme loadings required for biomass hydrolysis motivates the use of lignocellulose as feedstock for on-site, integrated production of holocellulases in biorefineries. However, due to high recalcitrance, raw lignocellulose limits fungal growth and enzyme production. Pretreatment technologies can enhance enzyme production when employing lignocellulosic materials as substrate. This review provides a brief description of currently available pretreatment technologies and illustrates the potential of pretreating lignocellulosic wastes for enzyme production with filamentous fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lau MW, Bals BD, Chundawat SPS, Jin M, Gunawan C, Balan V, Jones AD, Dale BE (2012) An integrated paradigm for cellulosic biorefineries: utilization of lignocellulosic biomass as self-sufficient feedstocks for fuel, food precursors and saccharolytic enzyme production. Energy Environ Sci 5:7100–7110

    Article  CAS  Google Scholar 

  2. Hong Y, Nizami AS, Bafrani MP, Saville BA, Maclean HL (2013) Impact of cellulase production on environmental and financial metrics for lignocellulosic ethanol. Biofuels Bioprod Bioref 7:303–313

    Article  CAS  Google Scholar 

  3. Liu G, Zhang J, Bao J (2016) Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous aspen plus modeling. Bioprocess Biosyst Eng 39:133–140

    Article  PubMed  Google Scholar 

  4. Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. Adv Biochem Engin/Biotechnol 108:95–120

    Article  CAS  Google Scholar 

  5. Johnson E (2016) Integrated enzyme production lowers the cost of cellulosic ethanol. Biofuels Bioprod Bioref 10:164–174

    Article  CAS  Google Scholar 

  6. Kovács K, Szakacs G, Zacchi G (2009) Comparative enzymatic hydrolysis of pretreated spruce by supernatants, whole fermentation broths and washed mycelia of Trichoderma reesei and Trichoderma atroviride. Bioresour Technol 100:1350–1357

    Article  PubMed  Google Scholar 

  7. Pereira BMP, Alvarez TM, Delabona OS, Dillon AJP, Squina FM, Pradella JGC (2013) Cellulase on-site production from sugar cane bagasse using Penicillium echinulatum. Bioenerg Res 6:1052–1062

    Article  CAS  Google Scholar 

  8. Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M, Sexton D, Dudgeon D (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol. NREL Technical Report. www.nrel.gov/docs/fy11osti/47764.pdf. Accessed 10 December 2016

  9. Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microbial Technol 46:541–549

    Article  CAS  Google Scholar 

  10. de Souza WR, Gouvea PF, Savoldi M, Malavazi I, Bernardes LAS, Goldman MHS, de Vries RP, Oliveira JVC, Goldman GH (2011) Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse. Biotechnol Biofuels 4:40

    Article  PubMed  PubMed Central  Google Scholar 

  11. Brown NA, Ries LNA, Reis T, Rajendran R, Santos RAC, Ramage G, Riaño-Pachón DM, Goldman GH (2016) RNAseq reveals hydrophobins that are involved in the adaptation of Aspergillus nidulans to lignocellulose. Biotechnol Biofuels 9:145

    Article  PubMed  PubMed Central  Google Scholar 

  12. Juhász T, Szengyel Z, Részey K, Siika-Aho M, Viikari L (2005) Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochem 40:3519–3525

    Article  Google Scholar 

  13. Kovács K, Macrelli S, Szakacs G, Zacchi G (2009) Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house. Biotechnol Biofuels 2:14

    Article  PubMed  PubMed Central  Google Scholar 

  14. Camassola M, Dillon AJP (2014) Effect of different pretreatment of sugar cane bagasse on cellulase and xylanases production by the mutant Penicillium echinulatum 9A02S1 grown in submerged culture. Biomed Res Int. doi:10.1155/2014/720740

    Google Scholar 

  15. Coffman AM, Li Q, Ju LK (2014) Effect of natural and pretreated soybean hulls on enzyme production by Trichoderma reesei. J Am Oil Chem Soc 91:1331–1338

    Article  CAS  Google Scholar 

  16. Hu F, Ragauskas A (2012) Pretreatment and lignocellulosic chemistry. Bioenerg Res 5:1043–1066

    Article  CAS  Google Scholar 

  17. Silveira MHL, Morais ARC, Lopes AMC, Olekszyszen DN, Lukasik RB, Andreaus J, Ramos LP (2015) Current pretreatment technologies for the development of cellulosic ethanol and biorefineries. ChemSusChem 8:3366–3390

    Article  CAS  PubMed  Google Scholar 

  18. Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nov. 26(6):863–871

  19. Vegas R, Kabel M, Schols HA, Alonso JL, Parajó JC (2008) Hydrothermal processing of rice husks: effects of severity on product distribution. J Chem Technol Biotechnol 83:965–972

    Article  CAS  Google Scholar 

  20. DeMartini JD, Pattathil S, Avci U, Szekalski K, Mazumder K, Hahn MG, Wyman CE (2011) Application of monoclonal antibodies to investigate plant cell wall deconstruction for biofuels production. Energy Environ Sci 4:4332–4339

    Article  CAS  Google Scholar 

  21. Hongdan Z, Shaohua X, Shubin W (2013) Enhancement of enzymatic saccharification of sugarcane bagasse by liquid hot water pretreatment. Bioresour Technol 143:391–396

    Article  PubMed  Google Scholar 

  22. Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48

    Article  CAS  PubMed  Google Scholar 

  23. Balan V, Bals B, Chundawat SPS, Marshall D, Dale BE (2009) Lignocellulosic biomass pretreatment using AFEX. Methods Mol Biol 581:61–77

    Article  CAS  PubMed  Google Scholar 

  24. Chundawat SPS, Bellesia G, Uppugundla N, Sousa LC, Gao D, Cheh AM, Agarwal UP, Bianchetti CM, Philips GN, Langan P, Balan V, Gnanakaran S, Dale BE (2011) Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc 133:11163–11174

    Article  CAS  PubMed  Google Scholar 

  25. Peral C (2016) Biomass pretreatment strategies: technologies, environmental performance, economic considerations, industrial implementation. In: Poltronieri P, D’Urso OF (eds) Biotransformation of agricultural wastes and by-products: the food, feed, fibre, fuel (4F) economy, 1st edn. Elsevier, Amsterdam, pp 125–160

    Chapter  Google Scholar 

  26. Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass – an overview. Bioresour Technol 199:76–82

    Article  CAS  PubMed  Google Scholar 

  27. Brouder G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res. doi:10.4061/2011/787532

    Google Scholar 

  28. Engel P, Mladenov R, Wulfhorst H, Jäger G, Spiess AC (2010) Point by point analysis: how ionic liquid affects the enzymatic hydrolysis of native and modified cellulose. Green Chem 12:1959–1966

    Article  CAS  Google Scholar 

  29. Adsul MG, Terwadkar AP, Varma AJ, Gokhale D (2009) Cellulases from Penicillium janthinellum mutants: solid-state production and their stability in ionic liquids. Bioresources 4(4):1670–1681

    CAS  Google Scholar 

  30. Wang Y, Radosevich M, Hayes D, Labbé N (2011) Compatible ionic liquid-cellulases system for hydrolysis of lignocellulosic biomass. Biotechnol Bioeng 108(5):1042–1048

    Article  CAS  PubMed  Google Scholar 

  31. Salvador AC, Santos MC, Saraiva JA (2010) Effect of the ionic liquid [bmim]Cl and high pressure on the activity of cellulase. Green Chem 12:632–635

    Article  CAS  Google Scholar 

  32. Turner MB, Spear SK, Huddleston JG, Holbrey JD, Rogers RD (2003) Ionic liquid salt-induced inactivation and unfolding of cellulase from Trichoderma reesei. Green Chem 5:443–447

    Article  CAS  Google Scholar 

  33. Bose S, Armstrong DW, Petrich JW (2010) Enzyme-catalyzed hydrolysis of cellulose in ionic liquids: a green approach toward the production of biofuels. J Phys Chem B 114:8221–8227

    Article  CAS  PubMed  Google Scholar 

  34. Datta S, Holmes B, Park JI, Chen Z, Dibble D, Hadi M, Blanch HW, Simmons BA, Sapra R (2010) Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis. Green Chem 12:338–345

    Article  CAS  Google Scholar 

  35. Pottkämper J, Barthen P, Ilmberger N, Schwaneberg U, Schenk A, Schulte M, Ingatiev N, Streit WR (2009) Applying metagenomics for the identification of bacterial cellulases that are stable in ionic liquids. Green Chem 11:957–965

    Article  Google Scholar 

  36. Goldbeck R, Ramos MM, Pereira GAG, Maugeri-Filho F (2013) Cellulase production from a new strain Acremonium strictum isolated from the Brazilian biome using different substrates. Bioresour Technol 128:797–803

    Article  CAS  PubMed  Google Scholar 

  37. Hongqiang L, Hongzhang C (2008) Detoxification of steam-exploded corn straw produced by an industrial-scale reactor. Process Biochem 43:1447–1451

    Article  Google Scholar 

  38. Bigelow M, Wyman C (2002) Cellulase production on bagasse pretreated with hot water. Appl Biochem Biotechnol 98-100:921–934

    Article  CAS  PubMed  Google Scholar 

  39. Li X, Lu J, Zhao J, Qu Y (2014) Characteristics of corn stover pretreated with liquid hot water and fed-batch semi-simultaneous saccharification and fermentation for bioethanol production. PLoS One 9(4):e95455

    Article  PubMed  PubMed Central  Google Scholar 

  40. Brijwani K, Vadlani PV (2011) Cellulolytic enzymes production via solid-state fermentation: effect of pretreatment methods on physicochemical characteristics of substrate. Enzyme Res. doi:10.4061/2011/860134

    PubMed  PubMed Central  Google Scholar 

  41. Ribeiro D, Costa J, Alvarez TM, Büchli F, Bragato J, Pereira BMP, Pauletti BA, Jackson G, Pimenta MTB, Murakami MT, Camassola M, Ruller R, Dillon AJP, Pradella JGC, Leme AFP, Squina FM (2012) The Penicillium echinulatum secretome on sugar cane bagasse. PLoS One 7(12):e50571. doi:10.1371/journal.pone.0050571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Robl D, Delabona PS, Costa PS, Lima DJS, Rabelo SC, Pimentel IC, Büchli F, Squina FM, Padilla G, Pradella JGC (2015) Xylanase production by endophytic Aspergillus niger using pentose-rich hydrothermal liquor from sugarcane bagasse. Biocatal Biotransform 33(3):175–187

    Article  CAS  Google Scholar 

  43. Brown NA, Ries LNA, Goldman GH (2014) How nutritional status signalling coordinates metabolism and lignocellulolytic enzyme secretion. Fungal Genet Biol 72:48–63

    Article  CAS  PubMed  Google Scholar 

  44. Ottenheim C, Verdejo C, Zimmermann W, Chuan J (2014) Hemicellulase production by Aspergillus niger DSM 26641 in hydrothermal palm oil empty fruit bunch hydrolysate and transcriptome analysis. J Biosci Bioeng 118(6):696–701

    Article  CAS  PubMed  Google Scholar 

  45. Milagres AMF, Prade RA (1994) Production of xylanases from Penicillium janthinellum and its use in the recovery of cellulosic textile fibers. Enzym Microb Technol 16:627–632

    Article  CAS  Google Scholar 

  46. Gyalai-Korpos M, Mangel R, Alvira P, Dienes D, Ballasteros M, Reczey K (2011) Cellulase production using different streams of wheat grain- and wheat straw-based ethanol processes. Ind Microbiol Biotechnol 38:791–802

    Article  CAS  Google Scholar 

  47. Michelin M, Polizeli MLTM, Ruzene DS, Silva DP, Vicente AA, Jorge JA, Terenzi HF, Teixeira JA (2012) Xylanase and β-xylosidase production by Aspergillus ochraceus: new perspectives for the application of wheat straw autohydrolysis liquor. Appl Biochem Biotechnol 166:336–347

    Article  CAS  PubMed  Google Scholar 

  48. Michelin M, Polizeli MLTM, Ruzene DS, Silva DP, Ruiz HA, Vicente AA, Jorge JA, Terenzi HF, Teixeira JA (2012) Production of xylanase and β-xylosidase from autohydrolysis liquor of corncob using two fungal strains. Bioprocess Biosyst Eng 35:1185–1192

    Article  CAS  PubMed  Google Scholar 

  49. Palmqvist E, Hahn-Hägerdal B, Szengyel Z, Zacchi G, Reczey K (1997) Simultaneous detoxification and enzyme production of hemicellulose hydrolysates obtained after steam pretreatment. Enzym Microb Technol 20:286–293

    Article  CAS  Google Scholar 

  50. Yu Y, Feng Y, Xu C, Liu J, Li D (2011) Onsite bio-detoxification of steam-exploded corn stover for cellulosic ethanol production. Bioresour Technol 102:5123–5128

    Article  CAS  PubMed  Google Scholar 

  51. Cavka A, Jönsson L (2014) Comparison of the growth of filamentous fungi and yeasts in lignocellulose-derived media. Biocatal Agricult Biotechnol 3:197–204

    Google Scholar 

  52. Kim Y, Ximenes E, Mosier NS, Ladisch MR (2011) Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzym Microb Technol 48:408–415

    Article  CAS  Google Scholar 

  53. Kont R, Kurašin M, Teugjas H, Väljamäe P (2013) Strong cellulase inhibitors from the hydrothermal pretreatment of wheat straw. Biotechnol Biofuels 6:135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Qing Q, Yang B, Wyman C (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 101:9624–9630

    Article  CAS  PubMed  Google Scholar 

  55. Yoon LW, Ngoh GC, Chua ASM (2013) Simultaneous production of cellulase and reducing sugar through modification of compositional and structural characteristic of sugarcane bagasse. Enzyme MicrobTechnol 53:250–256

    Article  CAS  Google Scholar 

  56. Adsul MG, Ghule JE, Singh R, Shaikh H, Bastawde KB, Gokhale DV, Varma AJ (2004) Polysaccharides from bagasse: applications in cellulase and xylanase production. Carbohydr Polym 57:67–72

    Article  CAS  Google Scholar 

  57. Castro AM, Carvalho MLA, Leite SGF, Pereira N Jr (2010) Cellulases from Penicillium funiculosum: production, properties and application to cellulose hydrolysis. J Ind Microbiol Biotechnol 37:151–158

    Article  CAS  PubMed  Google Scholar 

  58. Camassola M, Dillon AJP (2009) Biological pretreatment of sugar cane bagasse for the production of cellulases and xylanases by Penicillium echinulatum. Ind Crop Prod 29:642–647

    Article  CAS  Google Scholar 

  59. Khudyakov JI, D’haeseleer P, Borglin SE, DeAngelis KM, Woo H, Lindquist EA, Hazen TC, Simmons BA, Thelen MP (2012) Global transcriptome response to ionic liquid by a tropical rain forest soil bacterium, Enterobacter lignolyticus. Proc Natl Acad Sci U S A 109(32):2173–2182

    Article  Google Scholar 

  60. Bengtsson O, Arntzen MØ, Mathiesen G, Skaugen M, Eijsink VG (2016) A novel proteomics sample preparation method for secretome analysis of Hypocrea jecorina growing on insoluble substrates. J Proteome 131:104–112

    Article  CAS  Google Scholar 

  61. Siqueira FG, Siqueira EG, Jaramillo PMD, Silveira MHL, Andreaus J, Couto FA, Batista LR, Filho EXF (2010) The potential of agro-industrial residues for production of holocellulase from filamentous fungi. Int Biodeterior Biodegradation 64:20–26

    Article  Google Scholar 

  62. Barta Z, Kovacs K, Reczey K, Zacchi G (2010) Process design and economics of on-site cellulase production on various carbon sources in a softwood-based ethanol plant. Enzyme Res. doi:10.4061/2010/734182

    PubMed  PubMed Central  Google Scholar 

  63. Tolan JS (2002) Iogen’s process for producing ethanol from cellulosic biomass. Clean Techn Environ Policy 3:339–345

    Article  Google Scholar 

  64. Cunha FM, Kreke T, Badino AC, Farinas CS, Ximenes E, Ladisch MR (2014) Liquefaction of sugarcane bagasse for enzyme production. Bioresour Technol 172:249–252

    Article  CAS  PubMed  Google Scholar 

  65. Sørensen A, Teller PJ, Lübeck PS, Ahring BK (2011) Onsite enzyme production during bioethanol production from biomass: screening for suitable fungal strains. Appl Biochem Biotechnol 164:1058–1070

    Article  PubMed  Google Scholar 

  66. Hogan CM, Mes-Hartree M (1990) Recycle of cellulases and the use of lignocellulosic residue for enzyme production after hydrolysis of steam-pretreated aspenwood. J Ind Microbiol Biotechnol 6:253–262

    CAS  Google Scholar 

  67. Doppelbauer R, Esterbauer H, Steiner W, Lafferty RM, Steinmüler H (1987) The use of lignocellulosic wastes for production of cellulase by Trichoderma reesei. Appl Microbiol Biotechnol 26:485–494

    Article  CAS  Google Scholar 

  68. Alriksson B, Rose SH, van Zyl WH, Sjöde A, Nivelbrant NO, Jönsson LJ (2009) Cellulase production from spent lignocellulose hydrolysates by recombinant Aspergillus niger. Appl Environ Microbiol 75(8):2366–2374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jun H, Kieselbach T, Jönsson LJ (2011) Enzyme production by filamentous fungi: analysis of the secretome of Trichoderma reesei grown on unconventional carbon source. Microb Cell Factories 10:68

    Article  CAS  Google Scholar 

  70. Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109(4):1083–1087

    Article  CAS  PubMed  Google Scholar 

  71. Aiello C, Ferrer A, Ledesma A (1996) Effect of alkaline treatments at various temperatures on cellulase and biomass production using submerged sugarcane bagasse fermentation with Trichoderma reesei QM 9414. Bioresour Technol 57:13–18

    Article  CAS  Google Scholar 

  72. Singh A, Abidi AB, Darmwal NS, Agrawal AK (1988) Evaluation of chemical pre-treatment for biodegradation of agricultural lignocellulosic wastes by Aspergillus niger. MIRCEN J Appl Microbiol Biotechnol 4:473–479

    Article  CAS  Google Scholar 

  73. Kawamori M, Morikawa Y, Ado Y, Takasawa S (1986) Production of cellulases from alkali-treated bagasse in Trichoderma reesei. Appl Microbiol Biotechnol 24:454–458

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the receipt of financial support from the Brazilian National Council for Scientific and Technological Development (CNPq), Coordination for the Improvement of Higher Education Personnel (CAPES), Foundation for Research Support of the Federal District (FAPDF), and the National Institute for Science and Technology of Bioethanol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caio de Oliveira Gorgulho Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Gorgulho Silva, C., Filho, E.X.F. A Review of Holocellulase Production Using Pretreated Lignocellulosic Substrates. Bioenerg. Res. 10, 592–602 (2017). https://doi.org/10.1007/s12155-017-9815-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-017-9815-x

Keywords