Abstract
The economic viability of enzyme-based lignocellulosic biomass biorefineries depends on the low cost of holocellulose-degrading enzymes necessary for decomposing biomass into fermentable sugars and other value-added products. The high costs of commercial enzymes and the high enzyme loadings required for biomass hydrolysis motivates the use of lignocellulose as feedstock for on-site, integrated production of holocellulases in biorefineries. However, due to high recalcitrance, raw lignocellulose limits fungal growth and enzyme production. Pretreatment technologies can enhance enzyme production when employing lignocellulosic materials as substrate. This review provides a brief description of currently available pretreatment technologies and illustrates the potential of pretreating lignocellulosic wastes for enzyme production with filamentous fungi.

Similar content being viewed by others
References
Lau MW, Bals BD, Chundawat SPS, Jin M, Gunawan C, Balan V, Jones AD, Dale BE (2012) An integrated paradigm for cellulosic biorefineries: utilization of lignocellulosic biomass as self-sufficient feedstocks for fuel, food precursors and saccharolytic enzyme production. Energy Environ Sci 5:7100–7110
Hong Y, Nizami AS, Bafrani MP, Saville BA, Maclean HL (2013) Impact of cellulase production on environmental and financial metrics for lignocellulosic ethanol. Biofuels Bioprod Bioref 7:303–313
Liu G, Zhang J, Bao J (2016) Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous aspen plus modeling. Bioprocess Biosyst Eng 39:133–140
Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. Adv Biochem Engin/Biotechnol 108:95–120
Johnson E (2016) Integrated enzyme production lowers the cost of cellulosic ethanol. Biofuels Bioprod Bioref 10:164–174
Kovács K, Szakacs G, Zacchi G (2009) Comparative enzymatic hydrolysis of pretreated spruce by supernatants, whole fermentation broths and washed mycelia of Trichoderma reesei and Trichoderma atroviride. Bioresour Technol 100:1350–1357
Pereira BMP, Alvarez TM, Delabona OS, Dillon AJP, Squina FM, Pradella JGC (2013) Cellulase on-site production from sugar cane bagasse using Penicillium echinulatum. Bioenerg Res 6:1052–1062
Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M, Sexton D, Dudgeon D (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol. NREL Technical Report. www.nrel.gov/docs/fy11osti/47764.pdf. Accessed 10 December 2016
Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microbial Technol 46:541–549
de Souza WR, Gouvea PF, Savoldi M, Malavazi I, Bernardes LAS, Goldman MHS, de Vries RP, Oliveira JVC, Goldman GH (2011) Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse. Biotechnol Biofuels 4:40
Brown NA, Ries LNA, Reis T, Rajendran R, Santos RAC, Ramage G, Riaño-Pachón DM, Goldman GH (2016) RNAseq reveals hydrophobins that are involved in the adaptation of Aspergillus nidulans to lignocellulose. Biotechnol Biofuels 9:145
Juhász T, Szengyel Z, Részey K, Siika-Aho M, Viikari L (2005) Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochem 40:3519–3525
Kovács K, Macrelli S, Szakacs G, Zacchi G (2009) Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house. Biotechnol Biofuels 2:14
Camassola M, Dillon AJP (2014) Effect of different pretreatment of sugar cane bagasse on cellulase and xylanases production by the mutant Penicillium echinulatum 9A02S1 grown in submerged culture. Biomed Res Int. doi:10.1155/2014/720740
Coffman AM, Li Q, Ju LK (2014) Effect of natural and pretreated soybean hulls on enzyme production by Trichoderma reesei. J Am Oil Chem Soc 91:1331–1338
Hu F, Ragauskas A (2012) Pretreatment and lignocellulosic chemistry. Bioenerg Res 5:1043–1066
Silveira MHL, Morais ARC, Lopes AMC, Olekszyszen DN, Lukasik RB, Andreaus J, Ramos LP (2015) Current pretreatment technologies for the development of cellulosic ethanol and biorefineries. ChemSusChem 8:3366–3390
Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nov. 26(6):863–871
Vegas R, Kabel M, Schols HA, Alonso JL, Parajó JC (2008) Hydrothermal processing of rice husks: effects of severity on product distribution. J Chem Technol Biotechnol 83:965–972
DeMartini JD, Pattathil S, Avci U, Szekalski K, Mazumder K, Hahn MG, Wyman CE (2011) Application of monoclonal antibodies to investigate plant cell wall deconstruction for biofuels production. Energy Environ Sci 4:4332–4339
Hongdan Z, Shaohua X, Shubin W (2013) Enhancement of enzymatic saccharification of sugarcane bagasse by liquid hot water pretreatment. Bioresour Technol 143:391–396
Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48
Balan V, Bals B, Chundawat SPS, Marshall D, Dale BE (2009) Lignocellulosic biomass pretreatment using AFEX. Methods Mol Biol 581:61–77
Chundawat SPS, Bellesia G, Uppugundla N, Sousa LC, Gao D, Cheh AM, Agarwal UP, Bianchetti CM, Philips GN, Langan P, Balan V, Gnanakaran S, Dale BE (2011) Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc 133:11163–11174
Peral C (2016) Biomass pretreatment strategies: technologies, environmental performance, economic considerations, industrial implementation. In: Poltronieri P, D’Urso OF (eds) Biotransformation of agricultural wastes and by-products: the food, feed, fibre, fuel (4F) economy, 1st edn. Elsevier, Amsterdam, pp 125–160
Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass – an overview. Bioresour Technol 199:76–82
Brouder G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res. doi:10.4061/2011/787532
Engel P, Mladenov R, Wulfhorst H, Jäger G, Spiess AC (2010) Point by point analysis: how ionic liquid affects the enzymatic hydrolysis of native and modified cellulose. Green Chem 12:1959–1966
Adsul MG, Terwadkar AP, Varma AJ, Gokhale D (2009) Cellulases from Penicillium janthinellum mutants: solid-state production and their stability in ionic liquids. Bioresources 4(4):1670–1681
Wang Y, Radosevich M, Hayes D, Labbé N (2011) Compatible ionic liquid-cellulases system for hydrolysis of lignocellulosic biomass. Biotechnol Bioeng 108(5):1042–1048
Salvador AC, Santos MC, Saraiva JA (2010) Effect of the ionic liquid [bmim]Cl and high pressure on the activity of cellulase. Green Chem 12:632–635
Turner MB, Spear SK, Huddleston JG, Holbrey JD, Rogers RD (2003) Ionic liquid salt-induced inactivation and unfolding of cellulase from Trichoderma reesei. Green Chem 5:443–447
Bose S, Armstrong DW, Petrich JW (2010) Enzyme-catalyzed hydrolysis of cellulose in ionic liquids: a green approach toward the production of biofuels. J Phys Chem B 114:8221–8227
Datta S, Holmes B, Park JI, Chen Z, Dibble D, Hadi M, Blanch HW, Simmons BA, Sapra R (2010) Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis. Green Chem 12:338–345
Pottkämper J, Barthen P, Ilmberger N, Schwaneberg U, Schenk A, Schulte M, Ingatiev N, Streit WR (2009) Applying metagenomics for the identification of bacterial cellulases that are stable in ionic liquids. Green Chem 11:957–965
Goldbeck R, Ramos MM, Pereira GAG, Maugeri-Filho F (2013) Cellulase production from a new strain Acremonium strictum isolated from the Brazilian biome using different substrates. Bioresour Technol 128:797–803
Hongqiang L, Hongzhang C (2008) Detoxification of steam-exploded corn straw produced by an industrial-scale reactor. Process Biochem 43:1447–1451
Bigelow M, Wyman C (2002) Cellulase production on bagasse pretreated with hot water. Appl Biochem Biotechnol 98-100:921–934
Li X, Lu J, Zhao J, Qu Y (2014) Characteristics of corn stover pretreated with liquid hot water and fed-batch semi-simultaneous saccharification and fermentation for bioethanol production. PLoS One 9(4):e95455
Brijwani K, Vadlani PV (2011) Cellulolytic enzymes production via solid-state fermentation: effect of pretreatment methods on physicochemical characteristics of substrate. Enzyme Res. doi:10.4061/2011/860134
Ribeiro D, Costa J, Alvarez TM, Büchli F, Bragato J, Pereira BMP, Pauletti BA, Jackson G, Pimenta MTB, Murakami MT, Camassola M, Ruller R, Dillon AJP, Pradella JGC, Leme AFP, Squina FM (2012) The Penicillium echinulatum secretome on sugar cane bagasse. PLoS One 7(12):e50571. doi:10.1371/journal.pone.0050571
Robl D, Delabona PS, Costa PS, Lima DJS, Rabelo SC, Pimentel IC, Büchli F, Squina FM, Padilla G, Pradella JGC (2015) Xylanase production by endophytic Aspergillus niger using pentose-rich hydrothermal liquor from sugarcane bagasse. Biocatal Biotransform 33(3):175–187
Brown NA, Ries LNA, Goldman GH (2014) How nutritional status signalling coordinates metabolism and lignocellulolytic enzyme secretion. Fungal Genet Biol 72:48–63
Ottenheim C, Verdejo C, Zimmermann W, Chuan J (2014) Hemicellulase production by Aspergillus niger DSM 26641 in hydrothermal palm oil empty fruit bunch hydrolysate and transcriptome analysis. J Biosci Bioeng 118(6):696–701
Milagres AMF, Prade RA (1994) Production of xylanases from Penicillium janthinellum and its use in the recovery of cellulosic textile fibers. Enzym Microb Technol 16:627–632
Gyalai-Korpos M, Mangel R, Alvira P, Dienes D, Ballasteros M, Reczey K (2011) Cellulase production using different streams of wheat grain- and wheat straw-based ethanol processes. Ind Microbiol Biotechnol 38:791–802
Michelin M, Polizeli MLTM, Ruzene DS, Silva DP, Vicente AA, Jorge JA, Terenzi HF, Teixeira JA (2012) Xylanase and β-xylosidase production by Aspergillus ochraceus: new perspectives for the application of wheat straw autohydrolysis liquor. Appl Biochem Biotechnol 166:336–347
Michelin M, Polizeli MLTM, Ruzene DS, Silva DP, Ruiz HA, Vicente AA, Jorge JA, Terenzi HF, Teixeira JA (2012) Production of xylanase and β-xylosidase from autohydrolysis liquor of corncob using two fungal strains. Bioprocess Biosyst Eng 35:1185–1192
Palmqvist E, Hahn-Hägerdal B, Szengyel Z, Zacchi G, Reczey K (1997) Simultaneous detoxification and enzyme production of hemicellulose hydrolysates obtained after steam pretreatment. Enzym Microb Technol 20:286–293
Yu Y, Feng Y, Xu C, Liu J, Li D (2011) Onsite bio-detoxification of steam-exploded corn stover for cellulosic ethanol production. Bioresour Technol 102:5123–5128
Cavka A, Jönsson L (2014) Comparison of the growth of filamentous fungi and yeasts in lignocellulose-derived media. Biocatal Agricult Biotechnol 3:197–204
Kim Y, Ximenes E, Mosier NS, Ladisch MR (2011) Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzym Microb Technol 48:408–415
Kont R, Kurašin M, Teugjas H, Väljamäe P (2013) Strong cellulase inhibitors from the hydrothermal pretreatment of wheat straw. Biotechnol Biofuels 6:135
Qing Q, Yang B, Wyman C (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 101:9624–9630
Yoon LW, Ngoh GC, Chua ASM (2013) Simultaneous production of cellulase and reducing sugar through modification of compositional and structural characteristic of sugarcane bagasse. Enzyme MicrobTechnol 53:250–256
Adsul MG, Ghule JE, Singh R, Shaikh H, Bastawde KB, Gokhale DV, Varma AJ (2004) Polysaccharides from bagasse: applications in cellulase and xylanase production. Carbohydr Polym 57:67–72
Castro AM, Carvalho MLA, Leite SGF, Pereira N Jr (2010) Cellulases from Penicillium funiculosum: production, properties and application to cellulose hydrolysis. J Ind Microbiol Biotechnol 37:151–158
Camassola M, Dillon AJP (2009) Biological pretreatment of sugar cane bagasse for the production of cellulases and xylanases by Penicillium echinulatum. Ind Crop Prod 29:642–647
Khudyakov JI, D’haeseleer P, Borglin SE, DeAngelis KM, Woo H, Lindquist EA, Hazen TC, Simmons BA, Thelen MP (2012) Global transcriptome response to ionic liquid by a tropical rain forest soil bacterium, Enterobacter lignolyticus. Proc Natl Acad Sci U S A 109(32):2173–2182
Bengtsson O, Arntzen MØ, Mathiesen G, Skaugen M, Eijsink VG (2016) A novel proteomics sample preparation method for secretome analysis of Hypocrea jecorina growing on insoluble substrates. J Proteome 131:104–112
Siqueira FG, Siqueira EG, Jaramillo PMD, Silveira MHL, Andreaus J, Couto FA, Batista LR, Filho EXF (2010) The potential of agro-industrial residues for production of holocellulase from filamentous fungi. Int Biodeterior Biodegradation 64:20–26
Barta Z, Kovacs K, Reczey K, Zacchi G (2010) Process design and economics of on-site cellulase production on various carbon sources in a softwood-based ethanol plant. Enzyme Res. doi:10.4061/2010/734182
Tolan JS (2002) Iogen’s process for producing ethanol from cellulosic biomass. Clean Techn Environ Policy 3:339–345
Cunha FM, Kreke T, Badino AC, Farinas CS, Ximenes E, Ladisch MR (2014) Liquefaction of sugarcane bagasse for enzyme production. Bioresour Technol 172:249–252
Sørensen A, Teller PJ, Lübeck PS, Ahring BK (2011) Onsite enzyme production during bioethanol production from biomass: screening for suitable fungal strains. Appl Biochem Biotechnol 164:1058–1070
Hogan CM, Mes-Hartree M (1990) Recycle of cellulases and the use of lignocellulosic residue for enzyme production after hydrolysis of steam-pretreated aspenwood. J Ind Microbiol Biotechnol 6:253–262
Doppelbauer R, Esterbauer H, Steiner W, Lafferty RM, Steinmüler H (1987) The use of lignocellulosic wastes for production of cellulase by Trichoderma reesei. Appl Microbiol Biotechnol 26:485–494
Alriksson B, Rose SH, van Zyl WH, Sjöde A, Nivelbrant NO, Jönsson LJ (2009) Cellulase production from spent lignocellulose hydrolysates by recombinant Aspergillus niger. Appl Environ Microbiol 75(8):2366–2374
Jun H, Kieselbach T, Jönsson LJ (2011) Enzyme production by filamentous fungi: analysis of the secretome of Trichoderma reesei grown on unconventional carbon source. Microb Cell Factories 10:68
Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109(4):1083–1087
Aiello C, Ferrer A, Ledesma A (1996) Effect of alkaline treatments at various temperatures on cellulase and biomass production using submerged sugarcane bagasse fermentation with Trichoderma reesei QM 9414. Bioresour Technol 57:13–18
Singh A, Abidi AB, Darmwal NS, Agrawal AK (1988) Evaluation of chemical pre-treatment for biodegradation of agricultural lignocellulosic wastes by Aspergillus niger. MIRCEN J Appl Microbiol Biotechnol 4:473–479
Kawamori M, Morikawa Y, Ado Y, Takasawa S (1986) Production of cellulases from alkali-treated bagasse in Trichoderma reesei. Appl Microbiol Biotechnol 24:454–458
Acknowledgments
The authors acknowledge the receipt of financial support from the Brazilian National Council for Scientific and Technological Development (CNPq), Coordination for the Improvement of Higher Education Personnel (CAPES), Foundation for Research Support of the Federal District (FAPDF), and the National Institute for Science and Technology of Bioethanol.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
de Oliveira Gorgulho Silva, C., Filho, E.X.F. A Review of Holocellulase Production Using Pretreated Lignocellulosic Substrates. Bioenerg. Res. 10, 592–602 (2017). https://doi.org/10.1007/s12155-017-9815-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12155-017-9815-x
