Abstract
This study investigated the effects of pH, salinity, biomass concentration, and algal organic matter (AOM) on the efficiency of four commercial cationic flocculants. The tannin-based biopolymers Tanfloc SG and SL and the polyacrylamide polymers Flopam FO 4800 SH and FO 4990 SH were tested for flocculation of two microalgae models, the freshwater Chlorella vulgaris and the marine Nannochloropsis oculata. Both biomass concentration and AOM presence affected all polymers evaluated, whereas salinity and pH affected only Flopam and Tanfloc, respectively. A restabilization effect due to overdosing was only observed for Flopam polymers and increasing Tanfloc dose resulted in improved efficiency. Flopam polymers showed a significant decrease in the maximum quantum yield of photosystem II as function of polymer dose for Chlorella, which supported the need for toxicological studies to assess the potential toxicity of Flopam. In overall, Tanfloc was not affected by salinity nor presented potential toxicity therefore being recommended for the flocculation of both freshwater and marine species.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Barros AI, Gonçalves AL, Simões M, Pires JCM (2015) Harvesting techniques applied to microalgae: a review. Renew Sust Energ Rev 41:1489–1500. doi:10.1016/j.rser.2014.09.037
Gudin C, Thepenier C (1986) Bioconversion of solar energy into organic chemicals by microalgae. Adv Biotechnol Process 6:73–110
Molina Grima E, Belarbi E-H, Acién-Fernández FG et al (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515. doi:10.1016/S0734-9750(02)00050-2
Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799. doi:10.1126/science.1189003
Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energ 103:444–467. doi:10.1016/j.apenergy.2012.10.004
Vandamme D, Foubert I, Muylaert K (2013) Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol 31:233–239. doi:10.1016/j.tibtech.2012.12.005
Gregory J (2013) Flocculation fundamentals. In: Encyclopedia of colloid and interface science. Springer, Berlin, 459–491
Farooq W, Moon M, Ryu B-G et al (2015) Effect of harvesting methods on the reusability of water for cultivation of Chlorella vulgaris, its lipid productivity and biodiesel quality. Algal Res 8:1–7. doi:10.1016/j.algal.2014.12.007
Ebeling JM, Rishel KL, Sibrell PL (2005) Screening and evaluation of polymers as flocculation aids for the treatment of aquacultural effluents. Aquac Eng 33:235–249. doi:10.1016/j.aquaeng.2005.02.001
Garzon-Sanabria AJ, Ramirez-Caballero SS, Moss FEP, Nikolov ZL (2013) Effect of algogenic organic matter (AOM) and sodium chloride on Nannochloropsis salina flocculation efficiency. Bioresour Technol 143:231–237. doi:10.1016/j.biortech.2013.05.125
König RB, Sales R, Roselet F, Abreu PC (2014) Harvesting of the marine microalga Conticribra weissflogii (Bacillariophyceae) by cationic polymeric flocculants. Biomass Bioenerg 68:1–6. doi:10.1016/j.biombioe.2014.06.001
Bolto B, Gregory J (2007) Organic polyelectrolytes in water treatment. Water Res 41:2301–2324. doi:10.1016/j.watres.2007.03.012
Vandamme D, Foubert I, Fraeye I, Muylaert K (2012) Influence of organic matter generated by Chlorella vulgaris on five different modes of flocculation. Bioresour Technol 124:508–511. doi:10.1016/j.biortech.2012.08.121
Roselet F, Vandamme D, Roselet M et al (2015) Screening of commercial natural and synthetic cationic polymers for flocculation of freshwater and marine microalgae and effects of molecular weight and charge density. Algal Res 10:183–188. doi:10.1016/j.algal.2015.05.008
Tenney M (1969) Algal flocculation with synthetic organic polyelectrolytes. Appl Microbiol 18:965–971
Lavoie A, la Noüe de J (1987) Harvesting of Scenedesmus obliquus in wastewaters: auto- or bioflocculation? Biotechnol Bioeng 30:852–859. doi:10.1002/bit.260300707
Bilanovic D, Shelef G, Sukenik A (1988) Flocculation of microalgae with cationic polymers—effects of medium salinity. Biomass 17:65–76. doi:10.1016/0144-4565(88)90071-6
Henderson RK, Baker A, Parsons SA, Jefferson B (2008) Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms. Water Res 42:3435–3445. doi:10.1016/j.watres.2007.10.032
Zhu CJ, Lee Y-K (1997) Determination of biomass dry weight of marine microalgae. J Appl Phycol 9:189–194. doi:10.1023/A:1007914806640
Roselet F, Maicá P, Martins T, Abreu PC (2013) Comparison of open-air and semi-enclosed cultivation system for massive microalgae production in sub-tropical and temperate latitudes. Biomass Bioenerg 59:418–424. doi:10.1016/j.biombioe.2013.09.014
Vandamme D, Beuckels A, Vadelius E et al (2016) Inhibition of alkaline flocculation by algal organic matter for Chlorella vulgaris. Water Res 88:301–307. doi:10.1016/j.watres.2015.10.032
Pivokonsky M, Naceradska J, Kopecka I et al (2016) The impact of algogenic organic matter on water treatment plant operation and water quality: a review. Crit Rev Environ Sci Technol 46:291–335. doi:10.1080/10643389.2015.1087369
Myklestad SM (1995) Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Sci Total Environ 165:155–164. doi:10.1016/0048-9697(95)04549-g
Dubois M, Gilles KA, Hamilton JK et al (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. doi:10.1021/ac60111a017
Cid A, Herrero C, Torres E, Abalde J (1995) Copper toxicity on the marine microalga Phaeodactylum tricornutum: effects on photosynthesis and related parameters. Aquat Toxicol 31:165–174. doi:10.1016/0166-445X(94)00071-W
Motulsky H (2015) Essential biostatistics: a nonmathematical approach. Oxford University Press, New York
Kam S-K, Gregory J (1999) Charge determination of synthetic cationic polyelectrolytes by colloid titration. Colloid Surface A 159:165–179. doi:10.1016/s0927-7757(99)00172-7
Graham N, Gang F, Fowler G, Watts M (2008) Characterisation and coagulation performance of a tannin-based cationic polymer: a preliminary assessment. Colloid Surface A 327:9–16. doi:10.1016/j.colsurfa.2008.05.045
Beltrán-Heredia J, Sánchez-Martín J, Sánchez-Martín J, Solera-Hernández C (2009) Removal of sodium dodecyl benzene sulfonate from water by means of a new tannin-based coagulant: optimisation studies through design of experiments. Chem Eng J 153:56–61. doi:10.1016/j.cej.2009.06.012
Gutiérrez R, Passos F, Ferrer I et al (2015) Harvesting microalgae from wastewater treatment systems with natural flocculants: effect on biomass settling and biogas production. Algal Res 9:204–211. doi:10.1016/j.algal.2015.03.010
Roselet F, Burkert J, Abreu PC (2016) Flocculation of Nannochloropsis oculata using a tannin-based polymer: bench scale optimization and pilot scale reproducibility. Biomass Bioenerg 87:55–60. doi:10.1016/j.biombioe.2016.02.015
Nabweteme R, Yoo M, Kwon H-S et al (2015) Application of the extended DLVO approach to mechanistically study the algal flocculation. J Ind Eng Chem 30:289–294. doi:10.1016/j.jiec.2015.05.035
Palomino D, Hunkeler D, Stoll S (2012) Salt concentration influence on the efficiency of two cationic polymeric flocculants. Colloid Polym Sci 290:1301–1308. doi:10.1007/s00396-012-2653-7
Henderson RK, Parsons SA, Jefferson B (2008) The impact of algal properties and pre-oxidation on solid–liquid separation of algae. Water Res 42:1827–1845. doi:10.1016/j.watres.2007.11.039
Wyatt NB, Gloe LM, Brady PV et al (2012) Critical conditions for ferric chloride-induced flocculation of freshwater algae. Biotechnol Bioeng 109:493–501. doi:10.1002/bit.23319
Pivokonsky M, Kloucek O, Pivokonska L (2006) Evaluation of the production, composition and aluminum and iron complexation of algogenic organic matter. Water Res 40:3045–3052. doi:10.1016/j.watres.2006.06.028
Costa R, Pereira JL, Gomes J et al (2014) The effects of acrylamide polyelectrolytes on aquatic organisms: relating toxicity to chain architecture. Chemosphere 112:177–184. doi:10.1016/j.chemosphere.2014.03.096
Delrue F, Imbert Y, Fleury G et al (2015) Using coagulation–flocculation to harvest Chlamydomonas reinhardtii: coagulant and flocculant efficiencies, and reuse of the liquid phase as growth medium. Algal Res 9:283–290. doi:10.1016/j.algal.2015.04.004
Acknowledgements
The authors would like to thank TANAC and SNF Floerger for kindly providing polymers. F. Roselet was funded by a Sandwich Ph.D. grant (process no. 11839-13-9) from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). P.C. Abreu is a research fellow at Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). D. Vandamme is a postdoctoral researcher funded by the Research Foundation Flanders Belgium (FWO; 12D8914N). The manuscript was edited by Highlight Science Writing (highlight-science-writing.com).
Author information
Authors and Affiliations
Corresponding author
Additional information
Fabio Roselet and Dries Vandamme contributed equally to this work
Rights and permissions
About this article
Cite this article
Roselet, F., Vandamme, D., Roselet, M. et al. Effects of pH, Salinity, Biomass Concentration, and Algal Organic Matter on Flocculant Efficiency of Synthetic Versus Natural Polymers for Harvesting Microalgae Biomass. Bioenerg. Res. 10, 427–437 (2017). https://doi.org/10.1007/s12155-016-9806-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12155-016-9806-3


