Advertisement

BioEnergy Research

, Volume 9, Issue 4, pp 1015–1022 | Cite as

Production of Fermentable Sugars and Hydrogen-Rich Gas from Agave tequilana Biomass

  • Juan Carlos Farías-Sánchez
  • Ulises Velázquez-Valadez
  • Alfonso Vargas-Santillán
  • María Guadalupe Pineda-Pimentel
  • Erick Alejandro Mendoza-Chávez
  • José Guadalupe Rutiaga-Quiñones
  • Jaime Saucedo-Luna
  • Agustín Jaime Castro-MontoyaEmail author
Article

Abstract

The Mexican tequila industry annually processes approximately 1 × 106 Agave tequilana plants, generating approximately 1.78 × 108 kg of bagasse per year. This biomass is considered an attractive alternative to fossil fuels as an energy source and to produce biofuels and/or chemical products because it is produced and used without adversely affecting the environment. The first aim of the present work was to determine the effect of temperature, the concentration of H2SO4, and reaction time on the hydrolysis of agave bagasse to maximize the fermentable sugars using a steam explosion. This step process generated 71.11 g/L of reducible sugars in the supernatant (59.29 % glucose, 29.05 % xylose, and 11.66 % fructose) and unconverted organic matter of enzymatic hydrolysis bagasse (35.4 % α-cellulose, 7.33 % hemicellulose, 49.91 % lignin, and 7.31 % ashes). A mathematical surface response analysis of the hydrolysis was used for process optimization. The second aim involves the study of the thermodynamics of the reforming of unconverted organic matter from enzymatic hydrolysis of Agave tequilana bagasse (ATB) evaluated by the Gibbs free energy minimization method for hydrogen production. The effect of the parameters on the system performance measures, such as reaction temperature (T), Water/Biomass ratio (WBR), and pressure (P), were also investigated. The maximum H2 production obtained was 23.2 mol of H2/271.5 g ATB with a WBR ≥ 11 and a temperature of 740 °C. These findings indicate that the temperature and WBR are essential factors in the production of H2, which was reflected in the efficiency of the process.

Keywords

Lignocellulose residue Acid hydrolysis Agave tequilana Hydrogen Thermodynamic analysis 

Notes

Acknowledgments

This work was supported by the Mexican Council of Science and Technology (CONACYT) through the Bioenergy Thematic Network (“Red Temática de Bioenergía”).

References

  1. 1.
    Balat M, Balat M (2009) Political, economic and environmental impacts of biomass-based hydrogen. Int J Hydrog Energy 34(9):3589–3603CrossRefGoogle Scholar
  2. 2.
    SENER (2013) Estrategia Nacional de Energía 2013–2027. http://www.energia.gob.mx/res/PE_y_DT/pub/2013/ENE_2013-2027.pdf
  3. 3.
    Czernik S, Evans R, French R (2007) Hydrogen from biomass-production by steam reforming of biomass pyrolysis oil. Catal Today 129(3):265–268CrossRefGoogle Scholar
  4. 4.
    Saucedo-Luna J, Castro-Montoya AJ, Martinez-Pacheco MM, Sosa-Aguirre CR, Campos-Garcia J (2011) Efficient chemical and enzymatic saccharification of the lignocellulosic residue from Agave tequilana bagasse to produce ethanol by Pichia Caribbica. J Ind Microbiol Biotechnol 38(6):725–732CrossRefPubMedGoogle Scholar
  5. 5.
    Saucedo-Luna J, Castro-Montoya A, Rico J, Campos-García J (2010) Optimización de hidrólisis ácida de bagaso de Agave tequilana Weber. Revista mexicana de ingeniería química 9(1):91–97Google Scholar
  6. 6.
    Escamilla-Treviño LL (2012) Potential of plants from the genus agave as bioenergy crops. Bioenergy Research 5(1):1–9CrossRefGoogle Scholar
  7. 7.
    Crabtree RH (2010) Energy production and storage: inorganic chemical strategies for a warming world. John Wiley & Sons, USAGoogle Scholar
  8. 8.
    Pérez-Jiménez J-A (2008) Estudio del pretratamiento con agua caliente en fase líquida de la paja de trigo para su conversión biológica a etanol, Doctoral thesis, Universidad de Jaen, SpainGoogle Scholar
  9. 9.
    Luo X, Zhu J (2011) Effects of drying-induced fiber hornification on enzymatic saccharification of lignocelluloses. Enzym Microb Technol 48(1):92–99CrossRefGoogle Scholar
  10. 10.
    Rodríguez-Olalde NE, Mendoza-Chávez EA, Castro-Montoya AJ, Saucedo-Luna J, Maya-Yescas R, Rutiaga-Quiñones JG, Ortega JMP (2015) Simulation of syngas production from lignin using Guaiacol as a model compound. Energies 8(7):6705–6714CrossRefGoogle Scholar
  11. 11.
    Van Krevelen DW, Te Nijenhuis K (2009) Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Elsevier, OxfordCrossRefGoogle Scholar
  12. 12.
    Poboss N, Swiecki K, Charitos A, Hawthorne C, Zieba M, Scheffknecht G (2012) Experimental investigation of the absorption enhanced reforming of biomass in a 20 kWth dual fluidized bed system. Int J Thermodyn 15(1):53CrossRefGoogle Scholar
  13. 13.
    Negro MJ, Alvarez C, Ballesteros I, Romero I, Ballesteros M, Castro E, Manzanares P, Moya M, Oliva JM (2014) Ethanol production from glucose and xylose obtained from steam exploded water-extracted olive tree pruning using phosphoric acid as catalyst. Bioresour Technol 153:101–107. doi: 10.1016/j.biortech.2013.11.079 CrossRefPubMedGoogle Scholar
  14. 14.
    Sharma S, Kumar R, Gaur R, Agrawal R, Gupta RP, Tuli DK, Das B (2015) Pilot scale study on steam explosion and mass balance for higher sugar recovery from rice straw. Bioresour Technol 175:350–357CrossRefPubMedGoogle Scholar
  15. 15.
    Zimbardi F, Viola E, Nanna F, Larocca E, Cardinale M, Barisano D (2007) Acid impregnation and steam explosion of corn Stover in batch processes. Ind Crop Prod 26(2):195–206CrossRefGoogle Scholar
  16. 16.
    Cara C, Ruiz E, Ballesteros I, Negro MJ, Castro E (2006) Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification. Process Biochem 41(2):423–429CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Juan Carlos Farías-Sánchez
    • 1
  • Ulises Velázquez-Valadez
    • 1
  • Alfonso Vargas-Santillán
    • 1
  • María Guadalupe Pineda-Pimentel
    • 1
  • Erick Alejandro Mendoza-Chávez
    • 1
  • José Guadalupe Rutiaga-Quiñones
    • 2
  • Jaime Saucedo-Luna
    • 1
  • Agustín Jaime Castro-Montoya
    • 1
    Email author
  1. 1.Facultad de Ingeniería QuímicaUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  2. 2.Facultad de Ingeniería en Tecnología de la MaderaUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico

Personalised recommendations