BioEnergy Research

, Volume 9, Issue 4, pp 1023–1033 | Cite as

Assessing the Performance of Bacterial Cellulases: the Use of Bacillus and Paenibacillus Strains as Enzyme Sources for Lignocellulose Saccharification

  • Montserrat Orencio-Trejo
  • Susana De la Torre-Zavala
  • Aida Rodriguez-Garcia
  • Hamlet Avilés-Arnaut
  • Argel Gastelum-ArellanezEmail author


Plant biomass offers a renewable and environmentally favorable source of sugars that can be converted to different chemicals, second-generation ethanol, and other liquid fuels. Cellulose makes up approximately 45 % of the dry weight of lignocellulosic biomass. Prior to the enzymatic hydrolysis of cellulose, lignin and hemicellulose must be structurally altered or removed, at least in part, by chemical and/or physical pretreatments. However, the high cost and low efficiency of the enzymatic hydrolysis prevent the process from being economically competitive. For this reason, it is necessary to find enzymes suitable for this type of process, with higher specific activities and greater efficiency. Members of the Bacillus and Paenibacillus genera have been traditionally used for the production of many enzymes for industrial applications. Cellulases produced by both genera have shown activity on soluble and crystalline cellulose and high thermostability and/or activity over a wide pH spectrum. In this review, the most recent information about the characterization of cellulolytic enzymes obtained from new strains of the Bacillus and Paenibacillus genera are reviewed. We focused on the variety of isoenzymes produced by these cellulolytic strains, their optimal production and reaction conditions, and their kinetic parameters and biotechnological potential.


Bacillus Cellulases Cellulosomes Lignocellulose Paenibacillus 



The authors thank the Bioenergy Thematic Network (“Red Temática de Bioenergía”) for grant no. 260457.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ingram LO, Aldrich HC, Borges ACC, Cause TB, Martínez A, Morales F, Sal A, Underwood SA, Yomano LP, York SW, Zaldivar J, Zhou S (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog 15:855–866. doi: 10.1021/bp9901062 PubMedCrossRefGoogle Scholar
  2. 2.
    Greene N (2004) Growing energy. How biofuels can help end America’s oil dependence. Natural Resources Defense Council.Google Scholar
  3. 3.
    U.S. DOE (2006). Breaking the biological barriers to cellulosic ethanol: a joint research agenda, DOE/SC-0095. U.S. Department of Energy, Office of Science and Office of Energy Effciency and Renewable Energy.Google Scholar
  4. 4.
    Martínez A, Bolívar F & Gosset G (2002) Biotecnología energética sustentable: Etanol carburante para el transporte. Revista Universidad de México, 617: páginas centrales. (in Spanish).Google Scholar
  5. 5.
    Martínez A, ME R, López-Munguía A, Gosset G (2006) ¿Etanol carburante a partir de bagazo de caña? Revista Claridades Agropecuarias 155:33–39 in SpanishGoogle Scholar
  6. 6.
    Lal R (2005) World crop residues production and implications of its use as a biofuel. Environ Int 31:571–584CrossRefGoogle Scholar
  7. 7.
    Programa de Introducción de Bioenergéticos. Secretaría de Energía (2008) (in Spanish)
  8. 8.
    Alatorre-Frenk C (2009) Energías Renovables para el Desarrollo Sustentable en México. Secretaría de Energía (SENER), Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH. Ed. por Valle-Pereña JA, Eckermann A y Barzalobre V. Forever Print S.A. de C.V., México, D.F. 70 págs. url: (in Spanish).
  9. 9.
    Instituto Veracruzano de Bioenergéticos (2016) Gobierno del Estado de Veracruz, México. Spanish).
  10. 10.
    Pérez J, Muñoz-Dorado J, De la Rubia T, Martínez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5(2):53–63PubMedCrossRefGoogle Scholar
  11. 11.
    Béguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13(1):25–58PubMedCrossRefGoogle Scholar
  12. 12.
    Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101(13):4775–4800PubMedCrossRefGoogle Scholar
  13. 13.
    Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861PubMedCrossRefGoogle Scholar
  14. 14.
    Li X, Clarke K, Li K, Chen A (2012) The pattern of cell wall deterioration in lignocellulose fibers throughout enzymatic cellulose hydrolysis. Biotechnol Prog 28(6):1389–1399PubMedCrossRefGoogle Scholar
  15. 15.
    Vargas-Tah A, Moss-Acosta C, Trujillo-Martinez B, Tiessen A, Lozoya-Gloria E, Orencio-Trejo M, Gosset G, Martinez A (2015) Non-severe thermochemical hydrolysis of stover from white corn and sequential enzymatic saccharification and fermentation to ethanol. Bioresource Technol 198:611–618CrossRefGoogle Scholar
  16. 16.
    Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96(18):1986–1993PubMedCrossRefGoogle Scholar
  17. 17.
    Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1(2):119–134CrossRefGoogle Scholar
  18. 18.
    Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194PubMedCrossRefGoogle Scholar
  19. 19.
    Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Asha BM, Revathi M, Yadav A, Sakthivel N (2012) Purification and characterization of a thermophilic cellulase from a novel cellulolytic strain, Paenibacillus barcinonensis. J Microbiol Biotechnol 22(11):1501–1509PubMedCrossRefGoogle Scholar
  21. 21.
    Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35(5):377–391PubMedCrossRefGoogle Scholar
  22. 22.
    Maki M, Leung KT, Qin W (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5(5):500–516PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Banerjee G, Scott-Craig JS, Walton JD (2010) Improving enzymes for biomass conversion: a basic research perspective. Bioenergy Res 3(1):82–92CrossRefGoogle Scholar
  24. 24.
    Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttilä M, Ando T, Samejima M (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface 33:1279–1282.Google Scholar
  25. 25.
    Suwannarangsee S, Bunterngsook B, Arnthong J, Paemanee A, Thamchaipenet A, Eurwilaichitr L et al (2012) Optimisation of synergistic biomass degrading enzyme systems for efficient rice straw hydrolysis using an experimental mixture design. Bioresour Technol 119:252–261PubMedCrossRefGoogle Scholar
  26. 26.
    Greene ER, Himmel ME, Beckham GT, Tan Z (2015) Chapter three—glycosylation of cellulases: engineering better enzymes for biofuels, In: Baker DC, Horton D, (ed), Advances in carbohydrate chemistry and biochemistry 72: 63–112.Google Scholar
  27. 27.
    Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807PubMedCrossRefGoogle Scholar
  28. 28.
    Lee YJ, Kim BK, Lee BH, Jo KI, Lee NK, Chung CH et al (2008) Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresour Technol 99(2):378–386PubMedCrossRefGoogle Scholar
  29. 29.
    Beldman G, Voragen AGJ, Rombouts FM, Searle-van Leeuwen MF, Pilnik W (1987) Adsorption and kinetic behaviour of purified endoglucanases and exoglucanases from Trichoderma viride. Biotechnol Bioeng 30(2):251–257PubMedCrossRefGoogle Scholar
  30. 30.
    Shen H, Gilkes NR, Kilburn DG, Miller RC, Warren RAJ (1995) Cellobiohydrolase B, a second exo-cellobiohydrolase from the cellulolytic bacterium Cellulomonas fimi. Biochem J 311(Pt 1):67–74PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    LE T II, Henrissat B, Coutinho PM, Ekborg NA, Hutcheson SW, Weiner RM (2006) Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2–40. J Bacteriol 188(11):3849–3861CrossRefGoogle Scholar
  32. 32.
    Badhan AK, Chadha BS, Kaur J, Saini HS, Bhat MK (2007) Production of multiple xylanolytic and cellulolytic enzymes by thermophilic fungus Myceliophthora sp. IMI 387099. Bioresour Technol 98(3):504–510PubMedCrossRefGoogle Scholar
  33. 33.
    Gilbert M, Breuil C, Saddler JN (1992) Characterization of the enzymes present in the cellulase system of Thielavia terrestris 255B. Bioresour Technol 39(2):147–154CrossRefGoogle Scholar
  34. 34.
    Herpöel-Gimbert I, Margeot A, Dolla A, Jan G, Mollé D, Lignon S et al (2008) Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol Biofuels 1(1):18PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Gastelum-Arellanez A, Paredes-López O, Olalde-Portugal V (2014) Extracellular endoglucanase activity from Paenibacillus polymyxa BEb-40: production, optimization and enzymatic characterization. World J Microbiol Biotechnol 30(11):2953–2965PubMedCrossRefGoogle Scholar
  36. 36.
    Ekborg NA, Morrill W, Burgoyne AM, Li L, Distel DL (2007) CelAB, a multifunctional cellulase encoded by Teredinibacter turnerae T7902T, a culturable symbiont isolated from the wood-boring marine bivalve Lyrodus pedicellatus. Appl Environ Microbiol 73(23):7785–7788PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Ko CH, Chen WL, Tsai CH, Jane WN, Liu CC, Tu J (2007) Paenibacillus campinasensis BL11: a wood material-utilizing bacterial strain isolated from black liquor. Bioresour Technol 98(14):2727–2733PubMedCrossRefGoogle Scholar
  38. 38.
    Wang CM, Shyu CL, Ho SP, Chiou SH (2008) Characterization of a novel thermophilic, cellulose-degrading bacterium Paenibacillus sp. strain B39. Lett Appl Microbiol 47(1):46–53PubMedCrossRefGoogle Scholar
  39. 39.
    Liang Y, Yesuf J, Schmitt S, Bender K, Bozzola J (2009) Study of cellulases from a newly isolated thermophilic and cellulolytic Brevibacillus sp. strain JXL. J Ind Microbiol Biotechnol 36(7):961–970PubMedCrossRefGoogle Scholar
  40. 40.
    Li W, Zhang WW, Yang MM, Chen YL (2008) Cloning of the thermostable cellulase gene from newly isolated Bacillus subtilis and its expression in Escherichia coli. Mol Biotechnol 40(2):195–201PubMedCrossRefGoogle Scholar
  41. 41.
    Afzal S, Saleem M, Yasmin R, Naz M, Imran M (2009) Pre and post cloning characterization of a β-1,4-endoglucanase from Bacillus sp. Mol Biol Rep 37(4):1717–1723PubMedCrossRefGoogle Scholar
  42. 42.
    Yang D, Weng H, Wang M, Xu W, Li Y, Yang H (2010) Cloning and expression of a novel thermostable cellulase from newly isolated Bacillus subtilis strain I15. Mol Biol Rep 37(4):1923–1929PubMedCrossRefGoogle Scholar
  43. 43.
    Lloberas J, Perez-Pons JA, Querol E (1991) Molecular cloning, expression and nucleotide sequence of the endo-β-1,3-1,4-D-glucanase gene from Bacillus licheniformis. Predictive structural analyses of the encoded polypeptide. Eur J Biochem 197(2):337–343PubMedCrossRefGoogle Scholar
  44. 44.
    Li W, Huan X, Zhou Y, Ma Q, Chen Y (2009) Simultaneous cloning and expression of two cellulase genes from Bacillus subtilis newly isolated from golden takin (Budorcas taxicolor Bedfordi. Biochem Biophys Res Commun 383(4):397–400PubMedCrossRefGoogle Scholar
  45. 45.
    Falkoski DL, Guimarães VM, de Almeida MN, Alfenas AC, Colodette JL, de Rezende ST (2012) Characterization of cellulolytic extract from Pycnoporus sanguineus PF-2 and its application in biomass saccharification. Appl Biochem Biotechnol 166(6):1586–1603PubMedCrossRefGoogle Scholar
  46. 46.
    Castro AM, Pedro KCNR, Cruz JC, Ferreira MC, Leite SGF, Pereira N Jr (2010) Trichoderma harzianum IOC-4038: a promising strain for the production of a cellulolytic complex with significant β-glucosidase activity from sugarcane bagasse cellulignin. Appl Biochem Biotechnol 162(7):2111–2122PubMedCrossRefGoogle Scholar
  47. 47.
    AM C, de Carvalho ML d A, SG FL, Pereira N (2010) Cellulases from Penicillium funiculosum: production, properties and application to cellulose hydrolysis. J Ind Microbiol Biotechnol 37(2):151–158CrossRefGoogle Scholar
  48. 48.
    Karboune S, Geraert PA, Kermasha S (2008) Characterization of selected cellulolytic activities of multi-enzymatic complex system from Penicillum funiculosum. J Agric Food Chem 56(3):903–909PubMedCrossRefGoogle Scholar
  49. 49.
    Zhou J, Wang YH, Chu J, Luo LZ, Zhuang YP, Zhang SL (2009) Optimization of cellulase mixture for efficient hydrolysis of steam-exploded corn stover by statistically designed experiments. Bioresour Technol 100(2):819–825PubMedCrossRefGoogle Scholar
  50. 50.
    Rosgaard L, Pedersen S, Langston J, Akerhielm D, Cherry JR, Meyer AS (2007) Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated barley straw substrates. Biotechnol Prog 23(6):1270–1276PubMedCrossRefGoogle Scholar
  51. 51.
    Hill C, BR S, Tomashek J (2011) Process for enzymatic hydrolysis of pretreated lignocellulosic feedstocks. Patent US 8,017,373 B2 (United States). Iogen Energy Corporation, Ontario (CA)Google Scholar
  52. 52.
    Viikari L, Alapuranen M, Puranen T, Vehmaanperä J, Siika-aho M (2007) Thermostable enzymes in lignocellulose hydrolysis. In: Olsson L (ed) Biofuels vol. 108 of advances in biochemical engineering/biotechnology. Springer, Berlin Heidelberg, pp. 121–145Google Scholar
  53. 53.
    Walker LP, Belair CD, Wilson DB, Irwin DC (1993) Engineering cellulase mixtures by varying the mole fraction of Thermomonospora fusca E5 and E3, Trichoderma reesei CBHI, and Caldocellum saccharolyticum β-glucosidase. Biotechnol Bioeng 42(9):1019–1028PubMedCrossRefGoogle Scholar
  54. 54.
    Irwin DC, Spezio M, Walker LP, Wilson DB (1993) Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects. Biotechnol Bioeng 42(8):1002–1013PubMedCrossRefGoogle Scholar
  55. 55.
    Kim E, Irwin DC, Walker LP, Wilson DB (1998) Factorial optimization of a six-cellulase mixture. Biotechnol Bioeng 58(5):494–501PubMedCrossRefGoogle Scholar
  56. 56.
    Harchand RK, Singh S (1997) Characterization of cellulase complex of Streptomyces albaduncus. J Basic Microbiol 37(2):93–103PubMedCrossRefGoogle Scholar
  57. 57.
    Ekperigin MM (2007) Preliminary studies of cellulase production by Acinetobacter anitratus and Branhamella sp. Afr J Biotechnol 6(1):28–33Google Scholar
  58. 58.
    Rastogi G, Bhalla A, Adhikari A, Bischoff KM, Hughes SR, Christopher LP et al (2010) Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresour Technol 101(22):8798–8806PubMedCrossRefGoogle Scholar
  59. 59.
    Pandey S, Singh S, Yadav AN, Nain L, Saxena AK (2013) Phylogenetic diversity and characterization of novel and efficient cellulase producing bacterial isolates from various extreme environments. Biosci Biotechnol Biochem 77(7):1474–1480PubMedCrossRefGoogle Scholar
  60. 60.
    Holtzapple M, Cognata M, Shu Y, Hendrickson C (1990) Inhibition of Trichoderma reesei cellulase by sugars and solvents. Biotechnol Bioeng 36(3):275–287PubMedCrossRefGoogle Scholar
  61. 61.
    Zhang J, Viikari L (2012) Xylo-oligosaccharides are competitive inhibitors of cellobiohydrolase I from Thermoascus aurantiacus. Bioresour Technol 117(0):286–291PubMedCrossRefGoogle Scholar
  62. 62.
    Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M (2010) Inhibition of cellulases by phenols. Enzym Microb Technol 46(3–4):170–176CrossRefGoogle Scholar
  63. 63.
    Qing Q, Yang B, Wyman CE (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 101(24):9624–9630PubMedCrossRefGoogle Scholar
  64. 64.
    Berlin A, Balakshin M, Gilkes N, Kadla J, Maximenko V, Kubo S et al (2006) Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations. J Biotechnol 125(2):198–209PubMedCrossRefGoogle Scholar
  65. 65.
    Xiao Z, Zhang X, Gregg DJ, Saddler JN (2004) Effects of sugar inhibition on cellulases and β-glucosidase during enzymatic hydrolysis of softwood substrates. Appl Biochem Biotechnol 115(1–3):1115–1126CrossRefGoogle Scholar
  66. 66.
    Tengborg C, Galbe M, Zacchi G (2001) Reduced inhibition of enzymatic hydrolysis of steam-pretreated softwood. Enzym Microb Technol 28(9–10):835–844CrossRefGoogle Scholar
  67. 67.
    Johnson EA, Madia A, Demain AC (1981) Chemically defined minimal medium for growth of the anaerobic cellulolytic thermophile Clostridium thermocellum. Appl Environ Microbiol 41(4):1060–1062PubMedPubMedCentralGoogle Scholar
  68. 68.
    Ariffin H, Hassan MA, Shah UKM, Abdullah N, Ghazali FM, Shirai Y (2008) Production of bacterial endoglucanase from pretreated oil palm empty fruit bunch by Bacillus pumilus EB3. J Biosci Bioeng 106(3):231–236PubMedCrossRefGoogle Scholar
  69. 69.
    Beukes N, BI P (2006) Effect of sulfur-containing compounds on Bacillus cellulosome-associated ‘CMCase’ and ‘Avicelase’ activities. FEMS Microbiol Lett 264(2):226–231PubMedCrossRefGoogle Scholar
  70. 70.
    Kim CH, Kim DS (1995) Purification and specificity of a specific endo-β-1,4-D-glucanse (Avicelase II) resembling exo-cellobiohydrolase from Bacillus circulans. Enzym Microb Technol 17(3):248–254CrossRefGoogle Scholar
  71. 71.
    MS O, Mohammed N, Ingram LO, Shanmugam KT (2009) Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts. Appl Biochem Biotechnol 155(1–3):379–385Google Scholar
  72. 72.
    Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64(3–4):253–260PubMedGoogle Scholar
  73. 73.
    Kim SB, Timmusk S (2013) A simplified method for gene knockout and direct screening of recombinant clones for application in Paenibacillus polymyxa. PLoS One 8(6):e68092PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Bayer EA, Chancy H, Lamed R, Shoham Y (1998) Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol 8(5):548–557PubMedCrossRefGoogle Scholar
  75. 75.
    RH D (2008) Cellulases of mesophilic microorganisms: cellulosome and noncellulosome producers. Ann N Y Acad Sci 1125:267–279CrossRefGoogle Scholar
  76. 76.
    RH D, Kosugi A (2004) Cellulosomes: plant-cell-wall degrading enzyme complexes. Nat Rev Microbiol 2(7):541–551CrossRefGoogle Scholar
  77. 77.
    RH D, Kosugi A, Murashima K, Tamaru Y, SO H (2003) Cellulosomes from mesophilic bacteria. J Bacteriol 185(20):5907–5914CrossRefGoogle Scholar
  78. 78.
    Waeonukul R, KL K, Sakka K, Ratanakhanokchai K (2008) Effect of carbon sources on the induction of xylanolytic-cellulolytic multienzyme complexes in Paenibacillus curdlanolyticus strain B-6. Biosci Biotechnol Biochem 72(2):321–328PubMedCrossRefGoogle Scholar
  79. 79.
    Kim CH, Kim DS (1993) Extracellular cellulolytic enzymes of Bacillus circulans are present as two multiple-protein complexes. Appl Biochem Biotechnol 42:83–94CrossRefGoogle Scholar
  80. 80.
    Van Dyk JS, van Sakka M, Sakka K, BI P (2009) The cellulolytic and hemicellulolytic system of Bacillus licheniformis SVD1 and the evidence for production of a large multi-enzyme complex. Enzym Microb Technol 45(5):372–378CrossRefGoogle Scholar
  81. 81.
    Fanutti C, Ponyi T, Black GW, Hazlewood GP, Gilbert HJ (1995) The conserved noncatalytic 40-residue sequence in cellulases and hemicellulases from anaerobic fungi functions as a protein docking domain. J Biol Chem 270(49):29314–29322PubMedCrossRefGoogle Scholar
  82. 82.
    Li XL, Chen H, Ljungdahl LG (1997) Two cellulases, CelA and CelC, from the polycentric anaerobic fungus Orpinomyces strain PC-2 contain N-terminal docking domains for a cellulase-hemicellulase complex. Appl Environ Microbiol 63(12):4721–4728PubMedPubMedCentralGoogle Scholar
  83. 83.
    Lamed R, Setter E, Kenig R, Bayer EA (1983) Cellulosome: a discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities. Biotechnology and Bioengineering Symposium 13:163–181Google Scholar
  84. 84.
    Bayer EA, Morag E, Lamed R (1994) The cellulosome—a treasure-trove for biotechnology. Trends Biotechnol 12(9):379–386PubMedCrossRefGoogle Scholar
  85. 85.
    Bayer EA, Belaich JP, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554PubMedCrossRefGoogle Scholar
  86. 86.
    Demain AL, Newcomb M, JHD W (2005) Cellulase, clostridia and ethanol. Microbiol Mol Biol Rev 69(1):124–154PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Shoham Y, Lamed R, Bayer EA (1999) The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol 7(7):275–281PubMedCrossRefGoogle Scholar
  88. 88.
    Pason P, Kyu KL, Ratanakhanokchai K (2006) Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Appl Environ Microbiol 72(4):2483–2490PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Waeonukul R, Kyu KL, Sakka Ky, Ratanakhanokchai K (2009) Isolation and characterization of a multienzyme complex (cellulosome) of the Paenibacillus curdlanolyticus B-6 grown on Avicel under aerobic conditions. J Biosci Bioeng 107(6):610–614PubMedCrossRefGoogle Scholar
  90. 90.
    Górska E, Tudek B, Russel S (2001) Degradation of cellulose by nitrogen-fixing strain of Bacillus polymyxa. Acta Microbiol Pol 50(2):129–137PubMedGoogle Scholar
  91. 91.
    Górska EB, Jankiewicz U, Dobrzynski J, Russel S, Pietkiewicz S, Kalaji H et al (2015) Degradation and colonization of cellulose by diazotrophic strains of Paenibacillus polymyxa isolated from soil. J Biorem Biodegrad 6:271CrossRefGoogle Scholar
  92. 92.
    Dinis NJ, Bezerra RMF, Nunes F, Dias AA, Guedes CV, Ferreira LMM et al (2009) Modification of wheat straw lignin by solid state fermentation with white-rot fungi. Bioresour Technol 100(20):4829–4835PubMedCrossRefGoogle Scholar
  93. 93.
    Chu PW, Yap MN, CY W, Huang CM, Pan FM, Tseng MJ et al (2000) A proteomic analysis of secreted proteins from xylan-induced Bacillus sp. strain K-1. Electrophoresis 21(9):1740–1745PubMedCrossRefGoogle Scholar
  94. 94.
    FL S Jr, Melo IS, Dias AC, Andreote FD (2012) Cellulolytic bacteria from soils in harsh environments. World J Microbiol Biotechnol 28:2195–2203CrossRefGoogle Scholar
  95. 95.
    Sudiana IM, Rahayu RD, Imanuddin H, Rahmansyah M (2001) Cellulolytic bacteria of soil of Gunung Halimun National Park. Edisi Khusus Biodiversitas Taman Nasional Gunung Halimun Berita Biologi 25:703–709Google Scholar
  96. 96.
    Kim JK, Lee SC, Cho YY, Oh HJ, Ko YH (2012) Isolation of cellulolytic Bacillus subtilis strains from agricultural environments. ISRN Microbiology.Google Scholar
  97. 97.
    Sánchez MM, Fritze D, Blanco A, Spröer C, Tindall BJ, Schumann P, Kroppenstedt RM, Diaz P, Pastor FIJ (2005) Paenibacillus barcinonensis sp. nov., a xylanase-producing bacterium isolated from a rice field in the Ebro River delta. Int J Syst Evol Microbiol 55:935–939PubMedCrossRefGoogle Scholar
  98. 98.
    Khianngam S, Akaracharanya A, Tanasupawat S, Lee KC, Lee J-S (2009a) Paenibacillus thailandensis sp. nov. and Paenibacillus nanensis sp. nov., xylanase-producing bacteria from Thai soils. Int J Syst Evol Microbiol 59:564–568PubMedCrossRefGoogle Scholar
  99. 99.
    Khianngam S, Tanasupawat S, Lee J-S, Lee KC, Akaracharanya A (2009b) Paenibacillus siamensis sp. nov., Paenibacillus septentrionalis sp. nov., and Paenibacillus montaniterrae sp. nov., xylanase-producing bacteria from Thai soils. Int J Syst Evol Microbiol 59:130–134PubMedCrossRefGoogle Scholar
  100. 100.
    Adlakha N, Rajagopal R, Kumar S, Reddy VS, Yazdani SS (2011) Synthesis and characterization of chimeric proteins based on cellulase and xylanase from an insect gut bacterium. Appl Environ Microbiol 77(14):4859–4866PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Ghio S, Lorenzo GS, Lia V, Talia P, Cataldi A, Grasso D, Campos E (2012) Isolation of Paenibacillus sp. and Variovorax sp. strains from decaying woods and characterization of their potential for cellulose deconstruction. International Journal of Biochemistry and Molecular Biology 3(4):352–364PubMedPubMedCentralGoogle Scholar
  102. 102.
    Ghio S, Insani EM, Piccinni FE, Talia PM, Grasso DH, Campos E (2016) GH10 XynA is the main xylanase identified in the crude enzymatic extract of Paenibacillus sp. A59 when grown on xylan or lignocellulosic biomass. Microbiol Res:186–187Google Scholar
  103. 103.
    Fathallh Eida M, Nagaoka T, Wasaki J, Kouno K (2012) Isolation and characterization of cellulose-decomposing bacteria inhabiting sawdust and coffee residue composts. Microbes Environ 27(3):226–233PubMedCrossRefGoogle Scholar
  104. 104.
    Shi P, Tian J, Yuan T, Liu X, Huang H, Bai Y, Yang P, Chen X, Wu N, Yao B (2010) Paenibacillus sp. strain E18 bifunctional xylanase-glucanase with a single catalytic domain. Appl Environ Microbiol 76(11):3620–3624PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Farinas CS, Loyo MM, Baraldo A, Tardioli PW, Neto VB, Couri S (2010) Finding stable cellulase and xylanase: evaluation of the synergistic effect of pH and temperature. New Biotechnol 27(6):810–815CrossRefGoogle Scholar
  106. 106.
    Olofsson K, Bertilsson M, Lidén G (2008) A short review on SSF—an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnology for Biofuels 1(1)Google Scholar
  107. 107.
    Adlakha N, Sawant S, Anil A, Lali A, Yazdani SS (2012) Specific fusion of β-1,4-endoglucanase and β-1,4-glucosidase enhances cellulolytic activity and helps in channeling of intermediates. Appl Environ Microbiol 78(20):7447–7454PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Ogawa A, Suzumatsu A, Takizawa S, Kubota H, Sawada K, Hakamada Y et al (2007) Endoglucanases from Paenibacillus spp. form a new clan in glycoside hydrolase family 5. J Biotechnol 129(3):406–414PubMedCrossRefGoogle Scholar
  109. 109.
    Tjalsma H, Antelmann H, Jongbloed JD, Braun PG, Darmon E, Dorenbos R et al (2004) Proteomics of protein secretion by Bacillus subtilis: separating the “secrets” of the secretome. Microbiol Mol Biol Rev 68(2):207–233PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Kumar D, Ashfaque M, Muthukumar M, Singh M, Garg N (2012) Production and characterization of carboxymethyl cellulase from Paenibacillus polymyxa using mango peel as substrate. J Environ Biol 33(1):81–84PubMedGoogle Scholar
  111. 111.
    Ko CH, Tsai CH, Lin PH, Chang KC, Tu J, Wang YN et al (2010) Characterization and pulp refining activity of a Paenibacillus campinasensis cellulase expressed in Escherichia coli. Bioresour Technol 101(20):7882–7888PubMedCrossRefGoogle Scholar
  112. 112.
    Park IH, Chang J, Lee YS, Fang SJ, Choi YL (2012) Gene cloning of endoglucanase Cel5A from cellulose-degrading Paenibacillus xylanilyticus KJ-03 and purification and characterization of the recombinant enzyme. Protein J 31(3):238–245PubMedCrossRefGoogle Scholar
  113. 113.
    Liang YL, Zhang Z, Wu M, Wu Y, Feng JX (2014) Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1. Biomed. Res. Int. 512497.Google Scholar
  114. 114.
    Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11PubMedCrossRefGoogle Scholar
  115. 115.
    Bezerra RMF, Dias AA (2004) Discrimination among eight modified Michaelis-Menten kinetics models of cellulose hydrolysis with a large range of substrate/enzyme ratios: inhibition by cellobiose. Appl Biochem Biotechnol 112(3):173–184PubMedCrossRefGoogle Scholar
  116. 116.
    Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56(1):1–24PubMedCrossRefGoogle Scholar
  117. 117.
    Wiselogel A, Tyson S and Jhonson D (1996) Biomass feedstock resources and composition In: Hand-book on bioethanol: production and utilization. Wyman CE (ed), Taylor & Francis. Applied Energy Technology Series, pages 105–118.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Facultad de Ciencias Biológicas, Instituto de BiotecnologíaUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico

Personalised recommendations