BioEnergy Research

, Volume 9, Issue 4, pp 1070–1086 | Cite as

An Olive Tree Pruning Biorefinery for Co-Producing High Value-Added Bioproducts and Biofuels: Economic and Energy Efficiency Analysis

  • J. M. Romero-García
  • A. SanchezEmail author
  • G. Rendón-Acosta
  • J. C. Martínez-Patiño
  • E. Ruiz
  • G. Magaña
  • E. Castro


This work presents a conceptual design of an integrated biorefinery using olive tree pruning as feedstock. The biorefinery combines a state-of-the-art thermochemical technology for producing high value-added antioxidants with an energy self-sufficient biochemical platform for lignocellulosic ethanol production. These plants are integrated by exchanging energy and feedstock. The process and design parameters employed in the plant designs are based on the authors’ own lab and pilot-scale data. The paper discusses the economic dilemma of using this feedstock for producing high value-added products in small amounts versus producing large amounts of low-profit biofuels. The feasibility of this production strategy at medium scale is demonstrated via a techno-economic analysis based on total production cost for each co-product. Each plant is energy integrated, and the energy performance of the bioethanol plant is assessed by calculating the end-use-energy ratio. Both analyses are parameterized with respect to plant capacity (100–1500 t dry weight (dw)/day) and raw material price (20–100 €/ton dry weight).


Olive tree pruning Integrated biorefinery Natural antioxidants Bioethanol Techno-economic analysis Conceptual design 



The authors wish to express their gratitude for partial financial support from Consejería de Economía, Innovación y Ciencia (Junta de Andalucía), Proyecto de Investigación de Excelencia AGR-6103, including JMRG scholarship, Campus de Excelencia Internacional Agroalimentario (ceiA3), and Banco Santander S.A. (“Becas Iberoamérica. Jóvenes Profesores e Investigadores, 2014. Santander Universidades”). Partial financial support is also acknowledged from the Mexican Council of Science and Technology (CONACYT), Bioenergy Thematic Network (“Red Temática de Bioenergía”), grant 260457, and the Energy Sustainability Fund 2014-05 (CONACYT-SENER), Mexican Bioenergy Innovation Centre, Bioalcohols Cluster (249564). Special thanks are due to Antonio Lama-Muñoz and Subproductos Vegetales del Mediterráneo, S.L. (Ctra. Isla Menor, s/n CP 41014 Bellavista, Seville, Spain) for their collaboration and advice. The feedback from the reviewers is also deeply appreciated.


  1. 1.
    Cara C, Ruiz E, Ballesteros M, Manzanares P, Negro MJ, Castro E (2008) Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel 87:692–700. doi: 10.1016/j.fuel.2007.05.008 CrossRefGoogle Scholar
  2. 2.
    FAOSTAT (2015) Food and Agriculture Organization of the United Nations (FAO). Rome, Italy. Accessed 29 Oct 2015
  3. 3.
    Conde E, Cara C, Moure A, Ruiz E, Castro E, Domínguez H (2009) Antioxidant activity of the phenolic compounds released by hydrothermal treatments of olive tree pruning. Food Chem 114:806–812. doi: 10.1016/j.foodchem.2008.10.017 CrossRefGoogle Scholar
  4. 4.
    Romero-García JM, Niño L, Martínez-Patiño C, Álvarez C, Castro E, Negro MJ (2014) Biorefinery based on olive biomass. State of the art and future trends. Bioresour Technol 159:421–432. doi: 10.1016/j.biortech.2014.03.062 CrossRefPubMedGoogle Scholar
  5. 5.
    SODEAN (2004) Andalucia Energy Development Society (SODEAN S.A.). Use and potentials of olive grove biomass in Andalusia (in Spanish). Accessed 15 Nov 2015
  6. 6.
    García-Maraver A, Zamorano M, Ramos-Ridao A, Díaz LF (2012) Analysis of olive grove residual biomass potential for electric and thermal energy generation in Andalusia (Spain). Renew Sust Energ Rev 16:745–751. doi: 10.1016/j.rser.2011.08.040 CrossRefGoogle Scholar
  7. 7.
    Castro-Galiano E, Torres-Velasco E, Gallego-Álvarez FJ (2010) Logistics of olive grove biomass as a source of renewable energy (in Spanish). Proc. National Congress on Environment (CONAMA10), Madrid 2010Google Scholar
  8. 8.
    Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J (2002) Lignocellulosic biomass to ethanol process design and economics utilising co current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. Technical Report. National Renewable Energy Laboratory (NREL) NREL/TP-510-32438Google Scholar
  9. 9.
    Manzanares P, Negro MJ, Oliva JM, Saéz F, Ballesteros I, Ballesteros M, Cara C, Castro E, Ruiz E (2011) Different process configurations for bioethanol production from pretreated olive pruning biomass. J Chem Technol Biotechnol 86:881–887. doi: 10.1002/jctb.2604 CrossRefGoogle Scholar
  10. 10.
    Toledano A, Alegría I, Labidi J (2013) Biorefining of olive tree (Olea europea) pruning. Biomass Bioenergy 59:503–511. doi: 10.1016/j.biombioe.2013.10.019 CrossRefGoogle Scholar
  11. 11.
    Martínez-Patiño JC, Romero-García JM, Ruiz E, Oliva JM, Álvarez C, Romero I, Negro MJ, Castro E (2015) High solids loading pretreatment of olive tree pruning with dilute phosphoric acid for bioethanol production by Escherichia coli. Energy Fuel 29:1735–1742. doi: 10.1021/ef502541r CrossRefGoogle Scholar
  12. 12.
    Sanna A (2014) Advanced biofuels from thermochemical processing of sustainable biomass in Europe. Bioenerg Res 7:36–47. doi: 10.1007/s12155-013-9378-4 CrossRefGoogle Scholar
  13. 13.
    Directive 2009/28/EC (2009) European Parliament and Council, 23 April 2009, relative to promoting the use of energy from renewable sourcesGoogle Scholar
  14. 14.
    Spizzirri UG, Restuccia D, Chiricosta S, Ol P, Cirillo G, Curcio M, Iemma F, Puoci F, Picci N (2011) Olive stones as a source of antioxidants for food industry. J Food Nutr Res 50:57–67Google Scholar
  15. 15.
    Vegas R, Alonso JL, Domínguez H, Parajó JC (2005) Manufacture and refining of oligosaccharides from industrial solid wastes. Ind Eng Chem Res 44:614–620CrossRefGoogle Scholar
  16. 16.
    Aranda-Barradas JS, Garibay-Orijel C, Badillo-Corona JA, Salgado-Manjarrez E (2010) A stoichiometric analysis of biological xylitol production. Biochem Eng J 50:1–9. doi: 10.1016/j.bej.2009.10.023 CrossRefGoogle Scholar
  17. 17.
    Cara C, Ruiz E, Carvalheiro F, Moura P, Ballesteros I, Castro E, Gírio F (2012) Production, purification and characterisation of oligosaccharides from olive tree pruning autohydrolysis. Ind Crop Prod 40:225–231. doi: 10.1016/j.indcrop.2012.03.017 CrossRefGoogle Scholar
  18. 18.
    Toledano A, Serrano L, Labidi J (2011) Enhancement of lignin production from olive tree pruning integrated in a green biorefinery. Ind Eng Chem Res 50:6573–6579. doi: 10.1021/ie102142f CrossRefGoogle Scholar
  19. 19.
    Yoshikawa T, Shinohara S, Yagi T, Ryumon N, Nakasaka Y, Tago T, Masuda T (2014) Production of phenols from lignin-derived slurry liquid using iron oxide catalyst. Appl Catal B Environ 146:289–297. doi: 10.1016/j.apcatb.2013.03.010 CrossRefGoogle Scholar
  20. 20.
    Baker DA, Rials TG (2013) Recent advances in low-cost carbon fibre manufacture from lignin. J Appl Polym Sci 130:713–728. doi: 10.1002/app.39273 CrossRefGoogle Scholar
  21. 21.
    Pohjanlehto H, Setälä HM, Kiely DE, McDonald AG (2014) Lignin-xylaric acid-polyurethane-based polymer network systems: Preparation and characterization. J Appl Polym Sci 131. doi:  10.1002/app.39714
  22. 22.
    Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64:137–145. doi: 10.1007/s00253-003-1537-7 CrossRefPubMedGoogle Scholar
  23. 23.
    IEA (2009) International Energy Agency. Task 42 biorefineries. Accessed 15 Nov 2015
  24. 24.
    National Renewable Energy Laboratory (2009). What is a biorefinery? Accessed 15 Nov 2015
  25. 25.
    Requejo A, Peleteiro S, Garrote G, Rodríguez A, Jiménez L (2012) Biorefinery of olive pruning using various processes. Bioresour Technol 111:301–307. doi: 10.1016/j.biortech.2012.01.156 CrossRefPubMedGoogle Scholar
  26. 26.
    Dávila JA, Hernández V, Romero-García JM, Castro-Galiano E, Cardona CA (2014) Techno-economic assessment of gasification schemes for electricity generation from olive tree pruning. Paper presented at the 13th European Workshop on Lignocellulosics and Pulp Proceedings. ISBN: 978–84–616-9842-4 2014Google Scholar
  27. 27.
    Sagani A, Hagidimitriou M, Dedoussis V (2014) Techno-economic evaluation of tree pruning biomass fired power plants for electricity generation: the case of three prefectures in Greece. Proc. 22nd European Biomass Conference and Exhibition. ISSN 2282–5819 2014Google Scholar
  28. 28.
    Vera D, Jurado F, Margaritis NK, Grammelis P (2014) Experimental and economic study of a gasification plant fuelled with olive industry wastes. Energ Sustain Dev 23:247–257. doi: 10.1016/j.esd.2014.09.011 CrossRefGoogle Scholar
  29. 29.
    Charisiou ND, Paraskeva CA, Goula MA, Papadakis VG (2014) Techno-economical & sustainability analyses for multilateral exploitation of olive tree cultivation residues. J Environ Sci Technol Res 1:1–6Google Scholar
  30. 30.
    Hernández V, Romero-García JM, Dávila JA, Castro E, Cardona CA (2014) Techno-economic and environmental assessment of an olive stone based biorefinery. Resour Conserv Recycl 92:145–150. doi: 10.1016/j.resconrec.2014.09.008 CrossRefGoogle Scholar
  31. 31.
    Bozell JJ, Astner A, Baker D, Biannic B, Cedeno D, Elder T, Hosseinaei O, Delbeck L, Kim JW, O’Lenick CJ, Young T (2014) Integrating separation and conversion-conversion of biorefinery process streams to biobased chemicals and fuels. Bioenerg Res 7:856–866. doi: 10.1007/s12155-014-9424-x CrossRefGoogle Scholar
  32. 32.
    Sanchez A, Magaña G, Partida MI, Sanchez S (2016) Bi-dimensional sustainability analysis of a multi-feed biorefinery design for biofuels co-production from lignocellulosic residues and agro-industrial wastes. Chem Eng Res Des Vol 107C(2016):195–217CrossRefGoogle Scholar
  33. 33.
    Kemp IC (2007) Pinch analysis and process integration. 2nd ed. Butterworth-HeinemannGoogle Scholar
  34. 34.
    Sanchez A, Sevilla-Güitrón V, Magaña G, Gutierrez L (2013) Parametric analysis of total costs and energy efficiency of 2G enzymatic ethanol production. Fuel 113:165–179. doi: 10.1016/j.fuel.2013.05.034 CrossRefGoogle Scholar
  35. 35.
    National Renewable Energy Laboratory (2013) (NREL) Chemical analysis and testing laboratory analytical procedures. Washington D.C., EE.UU. Accessed 15 Oct 2015
  36. 36.
    Fernández-Bolaños J, Rodríguez G, Gómez E, Guillén R, Jiménez A, Heredia A, Rodríguez R (2004) Total recovery of the waste of two-phase olive oil processing: isolation of added-value compounds. J Agric Food Chem 52:5849–5855. doi: 10.1021/jf030821y CrossRefPubMedGoogle Scholar
  37. 37.
    El SN, Karakaya S (2009) Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutr Rev 67:632–638. doi: 10.1111/j.1753-4887.2009.00248.x CrossRefPubMedGoogle Scholar
  38. 38.
    Erbay Z, Icier F (2010) The importance and potential uses of olive leaves. Food Rev Int 26:319–334. doi: 10.1080/87559129.2010.496021 CrossRefGoogle Scholar
  39. 39.
    Rodrigues F, Pimentel FB, Oliveira MPP (2015) Olive by-products: challenge application in cosmetic industry. Ind Crop Prod 70:116–124. doi: 10.1016/j.indcrop.2015.03.027 CrossRefGoogle Scholar
  40. 40.
    Fernández-Bolaños J, Rodríguez Gutiérrez G, Lama Muñoz A, Rubio-Senent F, Fernandez-Bolaños Guzmán JM, Maya I, López López Ó, Marset Castro A (2013) Procedure to obtain hydroxytyrosol extract, hydroxytyrosol extract mixture and 3, 4-dihydroxifenilglicol, and hydroxytyrosile acetate extract, a from olive subproducts and their purification (in Spanish). Spanish patent ES 2 395 317 B1. Patent WO 2013007850 A1Google Scholar
  41. 41.
    Cara C, Moya M, Ballesteros I, Negro MJ, González A, Ruiz E (2007) Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass. Process Biochem 42:1003–1009. doi: 10.1016/j.procbio.2007.03.012 CrossRefGoogle Scholar
  42. 42.
    Romero-García JM, Martínez-Patiño C, Ruiz E, Romero I, Castro E (2016) Ethanol production from olive stone hydrolysates by xylose fermenting microorganisms. Bioethanol 2(1):51–65. doi: 10.1515/bioeth-2016-0002 CrossRefGoogle Scholar
  43. 43.
    Ballesteros I, Ballesteros M, Cara C, Sáez F, Castro E, Manzanares P, Negro MJ, Oliva JM (2011) Effect of water extraction on sugars recovery from steam exploded olive tree pruning. Bioresour Technol 102:6611–6616. doi: 10.1016/j.biortech.2011.03.077 CrossRefPubMedGoogle Scholar
  44. 44.
    Negro MJ, Alvarez C, Ballesteros I, Romero I, Ballesteros M, Castro E, Manzanares P, Moya M, Oliva JM (2014) Ethanol production from glucose and xylose obtained from steam exploded water-extracted olive tree pruning using phosphoric acid as catalyst. Bioresour Technol 153:101–107. doi: 10.1016/j.biortech.2013.11.079 CrossRefPubMedGoogle Scholar
  45. 45.
    Lopez FJ, Pinzi S, Ruiz JJ, Lopez A, Dorado MP (2010) Economic viability of the use of olive tree pruning as fuel for heating systems in public institutions in South Spain. Fuel 89:1386–1391CrossRefGoogle Scholar
  46. 46.
    Patterson MG (1996) What is energy efficiency? Concepts, indicators and methodological issues. Energ Policy 24:377–390. doi: 10.1016/0301-4215(96)00017-1 CrossRefGoogle Scholar
  47. 47.
    Bank of Spain (2015). Interest rates by entity (in Spanish). Accessed 15 Nov 2015
  48. 48.
    Perry RH, Green DW (1999) Perry’s chemical engineers’ handbook. McGraw-Hill, New YorkGoogle Scholar
  49. 49.
    National Institute of Statistics (2015) I ETCL. Trimestral survey of laboral economics 2/2015 (in Spanish). Accessed 15 Nov 2015
  50. 50.
    Ministry of Finance and Public Administration (2015). Government approves fiscal reform to reduce taxes to 20 million tax payers (in Spanish). Accessed 15 Nov 2015
  51. 51.
    CNMC (2015) Spanish Commission of Trade and Competitiveness. Biofuels statistics (2015) (in Spanish). Accessed 15 Nov 2015
  52. 52.
    ePure (2014) European renewable ethanol. Renewable ethanol: driving jobs, growth and innovation throughout Europe State of the Industry Report 2014. Accessed 15 Nov 15 2015
  53. 53.
    Grand View Research (2015) Natural antioxidants market analysis by product (vitamin C, vitamin E, polyphenols, carotenoids) and segment forecasts to 2022. Accessed 24 Nov 2015
  54. 54.
    BCC Research (2003) The global market for vitamins in food, feed, pharma and cosmetics. Accessed 24 Nov 2015
  55. 55.
    Euromonitor (2012) Antioxidants use in industry (in Spanish). Accessed 24 Nov 2015
  56. 56.
    Rodríguez G, Rodríguez R, Fernández-Bolaños J, Guillén R, Jiménez A (2007) Antioxidant activity of effluents during the purification of hydroxytyrosol and 3,4-dihydroxyphenyl glycol from olive oil waste. Eur Food Res Technol 224:733–741. doi: 10.1007/s00217-006-0366-1 CrossRefGoogle Scholar
  57. 57.
    Regulation (EC) (2008) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on food additivesGoogle Scholar
  58. 58.
    World Health Organization (2015). Food additives series (FAS). Accessed 15 Nov 2015
  59. 59.
    Fki I, Allouche N, Sayadi S (2005) The use of polyphenolic extract, purified hydroxytyrosol and 3,4-dihydroxyphenyl acetic acid from olive mill wastewater for the stabilization of refined oils: a potential alternative to synthetic antioxidants. Food Chem 93:197–204. doi: 10.1016/j.foodchem.2004.09.014 CrossRefGoogle Scholar
  60. 60.
    Personal communication. Olivefen®, Subproductos Vegetales del Mediterraneo, S.L. Seville, SpainGoogle Scholar
  61. 61.
    Sanchez A, Gomez D (2014) Analysis of historical total production costs of cellulosic ethanol and forecasting for the 2020-decade. Fuel 130:100–104. doi: 10.1016/j.fuel.2014.04.0372 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • J. M. Romero-García
    • 1
  • A. Sanchez
    • 2
    Email author
  • G. Rendón-Acosta
    • 2
  • J. C. Martínez-Patiño
    • 1
  • E. Ruiz
    • 1
  • G. Magaña
    • 2
  • E. Castro
    • 1
  1. 1.Department of Chemical, Environmental and Materials Engineering, Agrifood Campus of International Excellence (ceiA3)Universidad de JaénJaénSpain
  2. 2.Centro de Investigación y de Estudios Avanzados (CINVESTAV)Unidad Guadalajara de Ingeniería AvanzadaZapopanMexico

Personalised recommendations