Skip to main content

Advertisement

Log in

An Olive Tree Pruning Biorefinery for Co-Producing High Value-Added Bioproducts and Biofuels: Economic and Energy Efficiency Analysis

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

This work presents a conceptual design of an integrated biorefinery using olive tree pruning as feedstock. The biorefinery combines a state-of-the-art thermochemical technology for producing high value-added antioxidants with an energy self-sufficient biochemical platform for lignocellulosic ethanol production. These plants are integrated by exchanging energy and feedstock. The process and design parameters employed in the plant designs are based on the authors’ own lab and pilot-scale data. The paper discusses the economic dilemma of using this feedstock for producing high value-added products in small amounts versus producing large amounts of low-profit biofuels. The feasibility of this production strategy at medium scale is demonstrated via a techno-economic analysis based on total production cost for each co-product. Each plant is energy integrated, and the energy performance of the bioethanol plant is assessed by calculating the end-use-energy ratio. Both analyses are parameterized with respect to plant capacity (100–1500 t dry weight (dw)/day) and raw material price (20–100 €/ton dry weight).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cara C, Ruiz E, Ballesteros M, Manzanares P, Negro MJ, Castro E (2008) Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel 87:692–700. doi:10.1016/j.fuel.2007.05.008

    Article  CAS  Google Scholar 

  2. FAOSTAT (2015) Food and Agriculture Organization of the United Nations (FAO). Rome, Italy. http://faostat3.fao.org/browse/Q/QC/S. Accessed 29 Oct 2015

  3. Conde E, Cara C, Moure A, Ruiz E, Castro E, Domínguez H (2009) Antioxidant activity of the phenolic compounds released by hydrothermal treatments of olive tree pruning. Food Chem 114:806–812. doi:10.1016/j.foodchem.2008.10.017

    Article  CAS  Google Scholar 

  4. Romero-García JM, Niño L, Martínez-Patiño C, Álvarez C, Castro E, Negro MJ (2014) Biorefinery based on olive biomass. State of the art and future trends. Bioresour Technol 159:421–432. doi:10.1016/j.biortech.2014.03.062

    Article  PubMed  Google Scholar 

  5. SODEAN (2004) Andalucia Energy Development Society (SODEAN S.A.). Use and potentials of olive grove biomass in Andalusia (in Spanish). http://www.infaoliva.com/documentos/documentos/Potencial%20y%20Aprovechamiento%20del%20Olivar.pdf. Accessed 15 Nov 2015

  6. García-Maraver A, Zamorano M, Ramos-Ridao A, Díaz LF (2012) Analysis of olive grove residual biomass potential for electric and thermal energy generation in Andalusia (Spain). Renew Sust Energ Rev 16:745–751. doi:10.1016/j.rser.2011.08.040

    Article  Google Scholar 

  7. Castro-Galiano E, Torres-Velasco E, Gallego-Álvarez FJ (2010) Logistics of olive grove biomass as a source of renewable energy (in Spanish). Proc. National Congress on Environment (CONAMA10), Madrid 2010

  8. Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J (2002) Lignocellulosic biomass to ethanol process design and economics utilising co current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. Technical Report. National Renewable Energy Laboratory (NREL) NREL/TP-510-32438

  9. Manzanares P, Negro MJ, Oliva JM, Saéz F, Ballesteros I, Ballesteros M, Cara C, Castro E, Ruiz E (2011) Different process configurations for bioethanol production from pretreated olive pruning biomass. J Chem Technol Biotechnol 86:881–887. doi:10.1002/jctb.2604

    Article  CAS  Google Scholar 

  10. Toledano A, Alegría I, Labidi J (2013) Biorefining of olive tree (Olea europea) pruning. Biomass Bioenergy 59:503–511. doi:10.1016/j.biombioe.2013.10.019

    Article  CAS  Google Scholar 

  11. Martínez-Patiño JC, Romero-García JM, Ruiz E, Oliva JM, Álvarez C, Romero I, Negro MJ, Castro E (2015) High solids loading pretreatment of olive tree pruning with dilute phosphoric acid for bioethanol production by Escherichia coli. Energy Fuel 29:1735–1742. doi:10.1021/ef502541r

    Article  Google Scholar 

  12. Sanna A (2014) Advanced biofuels from thermochemical processing of sustainable biomass in Europe. Bioenerg Res 7:36–47. doi:10.1007/s12155-013-9378-4

    Article  CAS  Google Scholar 

  13. Directive 2009/28/EC (2009) European Parliament and Council, 23 April 2009, relative to promoting the use of energy from renewable sources

  14. Spizzirri UG, Restuccia D, Chiricosta S, Ol P, Cirillo G, Curcio M, Iemma F, Puoci F, Picci N (2011) Olive stones as a source of antioxidants for food industry. J Food Nutr Res 50:57–67

    CAS  Google Scholar 

  15. Vegas R, Alonso JL, Domínguez H, Parajó JC (2005) Manufacture and refining of oligosaccharides from industrial solid wastes. Ind Eng Chem Res 44:614–620

    Article  CAS  Google Scholar 

  16. Aranda-Barradas JS, Garibay-Orijel C, Badillo-Corona JA, Salgado-Manjarrez E (2010) A stoichiometric analysis of biological xylitol production. Biochem Eng J 50:1–9. doi:10.1016/j.bej.2009.10.023

    Article  CAS  Google Scholar 

  17. Cara C, Ruiz E, Carvalheiro F, Moura P, Ballesteros I, Castro E, Gírio F (2012) Production, purification and characterisation of oligosaccharides from olive tree pruning autohydrolysis. Ind Crop Prod 40:225–231. doi:10.1016/j.indcrop.2012.03.017

    Article  CAS  Google Scholar 

  18. Toledano A, Serrano L, Labidi J (2011) Enhancement of lignin production from olive tree pruning integrated in a green biorefinery. Ind Eng Chem Res 50:6573–6579. doi:10.1021/ie102142f

    Article  CAS  Google Scholar 

  19. Yoshikawa T, Shinohara S, Yagi T, Ryumon N, Nakasaka Y, Tago T, Masuda T (2014) Production of phenols from lignin-derived slurry liquid using iron oxide catalyst. Appl Catal B Environ 146:289–297. doi:10.1016/j.apcatb.2013.03.010

    Article  CAS  Google Scholar 

  20. Baker DA, Rials TG (2013) Recent advances in low-cost carbon fibre manufacture from lignin. J Appl Polym Sci 130:713–728. doi:10.1002/app.39273

    Article  CAS  Google Scholar 

  21. Pohjanlehto H, Setälä HM, Kiely DE, McDonald AG (2014) Lignin-xylaric acid-polyurethane-based polymer network systems: Preparation and characterization. J Appl Polym Sci 131. doi: 10.1002/app.39714

  22. Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64:137–145. doi:10.1007/s00253-003-1537-7

    Article  CAS  PubMed  Google Scholar 

  23. IEA (2009) International Energy Agency. Task 42 biorefineries. http://www.iea-bioenergy.task42-biorefineries.com/en/ieabiorefinery.htm. Accessed 15 Nov 2015

  24. National Renewable Energy Laboratory (2009). What is a biorefinery? http://www.nrel.gov/biomass/biorefinery.html. Accessed 15 Nov 2015

  25. Requejo A, Peleteiro S, Garrote G, Rodríguez A, Jiménez L (2012) Biorefinery of olive pruning using various processes. Bioresour Technol 111:301–307. doi:10.1016/j.biortech.2012.01.156

    Article  CAS  PubMed  Google Scholar 

  26. Dávila JA, Hernández V, Romero-García JM, Castro-Galiano E, Cardona CA (2014) Techno-economic assessment of gasification schemes for electricity generation from olive tree pruning. Paper presented at the 13th European Workshop on Lignocellulosics and Pulp Proceedings. ISBN: 978–84–616-9842-4 2014

  27. Sagani A, Hagidimitriou M, Dedoussis V (2014) Techno-economic evaluation of tree pruning biomass fired power plants for electricity generation: the case of three prefectures in Greece. Proc. 22nd European Biomass Conference and Exhibition. ISSN 2282–5819 2014

  28. Vera D, Jurado F, Margaritis NK, Grammelis P (2014) Experimental and economic study of a gasification plant fuelled with olive industry wastes. Energ Sustain Dev 23:247–257. doi:10.1016/j.esd.2014.09.011

    Article  Google Scholar 

  29. Charisiou ND, Paraskeva CA, Goula MA, Papadakis VG (2014) Techno-economical & sustainability analyses for multilateral exploitation of olive tree cultivation residues. J Environ Sci Technol Res 1:1–6

    Google Scholar 

  30. Hernández V, Romero-García JM, Dávila JA, Castro E, Cardona CA (2014) Techno-economic and environmental assessment of an olive stone based biorefinery. Resour Conserv Recycl 92:145–150. doi:10.1016/j.resconrec.2014.09.008

    Article  Google Scholar 

  31. Bozell JJ, Astner A, Baker D, Biannic B, Cedeno D, Elder T, Hosseinaei O, Delbeck L, Kim JW, O’Lenick CJ, Young T (2014) Integrating separation and conversion-conversion of biorefinery process streams to biobased chemicals and fuels. Bioenerg Res 7:856–866. doi:10.1007/s12155-014-9424-x

    Article  CAS  Google Scholar 

  32. Sanchez A, Magaña G, Partida MI, Sanchez S (2016) Bi-dimensional sustainability analysis of a multi-feed biorefinery design for biofuels co-production from lignocellulosic residues and agro-industrial wastes. Chem Eng Res Des Vol 107C(2016):195–217

    Article  Google Scholar 

  33. Kemp IC (2007) Pinch analysis and process integration. 2nd ed. Butterworth-Heinemann

  34. Sanchez A, Sevilla-Güitrón V, Magaña G, Gutierrez L (2013) Parametric analysis of total costs and energy efficiency of 2G enzymatic ethanol production. Fuel 113:165–179. doi:10.1016/j.fuel.2013.05.034

    Article  CAS  Google Scholar 

  35. National Renewable Energy Laboratory (2013) (NREL) Chemical analysis and testing laboratory analytical procedures. Washington D.C., EE.UU. http://www.eere.energy.gov/biomass/analytical_procedures.html. Accessed 15 Oct 2015

  36. Fernández-Bolaños J, Rodríguez G, Gómez E, Guillén R, Jiménez A, Heredia A, Rodríguez R (2004) Total recovery of the waste of two-phase olive oil processing: isolation of added-value compounds. J Agric Food Chem 52:5849–5855. doi:10.1021/jf030821y

    Article  PubMed  Google Scholar 

  37. El SN, Karakaya S (2009) Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutr Rev 67:632–638. doi:10.1111/j.1753-4887.2009.00248.x

    Article  PubMed  Google Scholar 

  38. Erbay Z, Icier F (2010) The importance and potential uses of olive leaves. Food Rev Int 26:319–334. doi:10.1080/87559129.2010.496021

    Article  CAS  Google Scholar 

  39. Rodrigues F, Pimentel FB, Oliveira MPP (2015) Olive by-products: challenge application in cosmetic industry. Ind Crop Prod 70:116–124. doi:10.1016/j.indcrop.2015.03.027

    Article  CAS  Google Scholar 

  40. Fernández-Bolaños J, Rodríguez Gutiérrez G, Lama Muñoz A, Rubio-Senent F, Fernandez-Bolaños Guzmán JM, Maya I, López López Ó, Marset Castro A (2013) Procedure to obtain hydroxytyrosol extract, hydroxytyrosol extract mixture and 3, 4-dihydroxifenilglicol, and hydroxytyrosile acetate extract, a from olive subproducts and their purification (in Spanish). Spanish patent ES 2 395 317 B1. Patent WO 2013007850 A1

  41. Cara C, Moya M, Ballesteros I, Negro MJ, González A, Ruiz E (2007) Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass. Process Biochem 42:1003–1009. doi:10.1016/j.procbio.2007.03.012

    Article  CAS  Google Scholar 

  42. Romero-García JM, Martínez-Patiño C, Ruiz E, Romero I, Castro E (2016) Ethanol production from olive stone hydrolysates by xylose fermenting microorganisms. Bioethanol 2(1):51–65. doi:10.1515/bioeth-2016-0002

    Article  Google Scholar 

  43. Ballesteros I, Ballesteros M, Cara C, Sáez F, Castro E, Manzanares P, Negro MJ, Oliva JM (2011) Effect of water extraction on sugars recovery from steam exploded olive tree pruning. Bioresour Technol 102:6611–6616. doi:10.1016/j.biortech.2011.03.077

    Article  CAS  PubMed  Google Scholar 

  44. Negro MJ, Alvarez C, Ballesteros I, Romero I, Ballesteros M, Castro E, Manzanares P, Moya M, Oliva JM (2014) Ethanol production from glucose and xylose obtained from steam exploded water-extracted olive tree pruning using phosphoric acid as catalyst. Bioresour Technol 153:101–107. doi:10.1016/j.biortech.2013.11.079

    Article  CAS  PubMed  Google Scholar 

  45. Lopez FJ, Pinzi S, Ruiz JJ, Lopez A, Dorado MP (2010) Economic viability of the use of olive tree pruning as fuel for heating systems in public institutions in South Spain. Fuel 89:1386–1391

    Article  CAS  Google Scholar 

  46. Patterson MG (1996) What is energy efficiency? Concepts, indicators and methodological issues. Energ Policy 24:377–390. doi:10.1016/0301-4215(96)00017-1

    Article  Google Scholar 

  47. Bank of Spain (2015). Interest rates by entity (in Spanish). http://www.bde.es/clientebanca/es/areas/Tipos_de_Interes/entidades/. Accessed 15 Nov 2015

  48. Perry RH, Green DW (1999) Perry’s chemical engineers’ handbook. McGraw-Hill, New York

    Google Scholar 

  49. National Institute of Statistics (2015) I ETCL. Trimestral survey of laboral economics 2/2015 (in Spanish). http://www.ine.es/daco/daco42/etcl/etcl0215.pdf. Accessed 15 Nov 2015

  50. Ministry of Finance and Public Administration (2015). Government approves fiscal reform to reduce taxes to 20 million tax payers (in Spanish). http://www.minhap.gob.es/Documentacion/Publico/GabineteMinistro/Notas%20Prensa/2014/S.E.%20HACIENDA/01-08-14%20Nota%20aprobaci%C3%B3n%20reforma%20fiscal.pdf. Accessed 15 Nov 2015

  51. CNMC (2015) Spanish Commission of Trade and Competitiveness. Biofuels statistics (2015) (in Spanish). http://www.cnmc.es/es-es/energ%C3%ADa/hidrocarburosl%C3%ADquidos/estad%C3%ADsticasdelmercado.aspx?p=p7&ti=Biocarburantes. Accessed 15 Nov 2015

  52. ePure (2014) European renewable ethanol. Renewable ethanol: driving jobs, growth and innovation throughout Europe State of the Industry Report 2014. http://www.epure.org/sites/default/files/publication/140612-222-State-of-the-Industry-Report-2014.pdf. Accessed 15 Nov 15 2015

  53. Grand View Research (2015) Natural antioxidants market analysis by product (vitamin C, vitamin E, polyphenols, carotenoids) and segment forecasts to 2022. http://www.grandviewresearch.com/industry-analysis/natural-antioxidants-market. Accessed 24 Nov 2015

  54. BCC Research (2003) The global market for vitamins in food, feed, pharma and cosmetics. http://www.bccresearch.com/market-research/food-and-beverage/FOD014C.html. Accessed 24 Nov 2015

  55. Euromonitor (2012) Antioxidants use in industry (in Spanish). http://www.alimentacion.enfasis.com/articulos/64237-el-consumo-antioxidantes-la-industria%C2%A0. Accessed 24 Nov 2015

  56. Rodríguez G, Rodríguez R, Fernández-Bolaños J, Guillén R, Jiménez A (2007) Antioxidant activity of effluents during the purification of hydroxytyrosol and 3,4-dihydroxyphenyl glycol from olive oil waste. Eur Food Res Technol 224:733–741. doi:10.1007/s00217-006-0366-1

    Article  Google Scholar 

  57. Regulation (EC) (2008) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on food additives

  58. World Health Organization (2015). Food additives series (FAS). http://www.who.int/foodsafety/publications/monographs/en/. Accessed 15 Nov 2015

  59. Fki I, Allouche N, Sayadi S (2005) The use of polyphenolic extract, purified hydroxytyrosol and 3,4-dihydroxyphenyl acetic acid from olive mill wastewater for the stabilization of refined oils: a potential alternative to synthetic antioxidants. Food Chem 93:197–204. doi:10.1016/j.foodchem.2004.09.014

    Article  CAS  Google Scholar 

  60. Personal communication. Olivefen®, Subproductos Vegetales del Mediterraneo, S.L. Seville, Spain

  61. Sanchez A, Gomez D (2014) Analysis of historical total production costs of cellulosic ethanol and forecasting for the 2020-decade. Fuel 130:100–104. doi:10.1016/j.fuel.2014.04.0372

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude for partial financial support from Consejería de Economía, Innovación y Ciencia (Junta de Andalucía), Proyecto de Investigación de Excelencia AGR-6103, including JMRG scholarship, Campus de Excelencia Internacional Agroalimentario (ceiA3), and Banco Santander S.A. (“Becas Iberoamérica. Jóvenes Profesores e Investigadores, 2014. Santander Universidades”). Partial financial support is also acknowledged from the Mexican Council of Science and Technology (CONACYT), Bioenergy Thematic Network (“Red Temática de Bioenergía”), grant 260457, and the Energy Sustainability Fund 2014-05 (CONACYT-SENER), Mexican Bioenergy Innovation Centre, Bioalcohols Cluster (249564). Special thanks are due to Antonio Lama-Muñoz and Subproductos Vegetales del Mediterráneo, S.L. (Ctra. Isla Menor, s/n CP 41014 Bellavista, Seville, Spain) for their collaboration and advice. The feedback from the reviewers is also deeply appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sanchez.

Appendix

Appendix

Fig. 8
figure 8

Process diagram of antioxidant plant

Fig. 9
figure 9

Process diagram of bioethanol plant. Pretreatment stage

Fig. 10
figure 10

Process diagram of bioethanol plant. Saccharification, fermentation, and separation stages

Fig. 11
figure 11

Process diagram of bioethanol plant. Cogeneration and WWT stages

Fig. 12
figure 12

Composite diagram of heat integration for antioxidant plant (1500 t dw/day)

Fig. 13
figure 13

Composite diagram of heat integration for bioethanol plant (1500 t dw/day)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero-García, J.M., Sanchez, A., Rendón-Acosta, G. et al. An Olive Tree Pruning Biorefinery for Co-Producing High Value-Added Bioproducts and Biofuels: Economic and Energy Efficiency Analysis. Bioenerg. Res. 9, 1070–1086 (2016). https://doi.org/10.1007/s12155-016-9786-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-016-9786-3

Keywords

Navigation