Skip to main content

Advertisement

Log in

Comparative NGS Transcriptomics Unravels Molecular Components Associated with Mosaic Virus Infection in a Bioenergy Plant Species, Jatropha curcas L.

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Jatropha curcas, a promising bioenergy crop is becoming vulnerable to various biotic stresses due to large-scale cultivation of selected genotypes, thereby affecting its yield potential. Virus causing mosaic disease is prevalent in Jatropha plantations and causing significant reduction in seed yield and quality. To better understand the molecular mechanisms associated with virus infection response, we performed RNA-seq-based comprehensive transcriptome sequencing of symptomatic virus-infected (JV) and healthy (JH) leaf tissues of J. curcas. Through reference genome-based mapping approach, 55,755 genes expressed in both samples were identified. Differential expression analysis identified genes linked to various pathways, upregulated and downregulated during mosaic virus infection. Upon KEGG-based functional annotation, it was observed that various metabolism-associated processes along with oxidative phosphorylation, endocytosis, terpenoid biosynthesis, and hormone signal transduction were upregulated whereas photosynthesis, anthocyanin biosynthesis, plant-pathogen interaction, and calcium signaling were downregulated in response to virus infection. Significantly, genes associated with hormone signal transduction were upregulated as physiological symptoms induced upon mosaic virus infection is due to the interplay of various phytohormones regulating general growth and development of plant. Also, many genes regulating photosynthesis which were downregulated during virus infection showed repressed rate of photosynthesis and also reduction in seed yield and oil content upon mosaic virus infection in J. curcas. RT-qPCR-based experimental validation approach was supplemented to confirm the computational identification. The study provides a repertoire of molecular components which have been affected in response to virus infection, and their precise role can be further functionally validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

ABA:

Abscisic acid

CDS:

Coding sequence

CML:

Calcium-binding protein

CMV:

Cucumber mosaic virus

CNGCs:

Cyclic nucleotide-gated ion channels

FPKM:

Fragments per kilobase of transcripts per million mapped reads

GO:

Gene ontology

JA:

Jasmonic acid

JcMD:

Jatropha curcas mosaic disease

JH:

Healthy

JV:

Virus infected

KEGG:

Kyoto Encyclopedia of Genes and Genomes

NGS:

Next-generation sequencing

RNA-seq:

Ribose nucleic acid sequencing

RPM1:

Resistance to Pseudomonas syringae PV Maculicola 1

RPS2:

Resistance to Pseudomonas syringae 2

RT-qPCR:

Reverse transcription-quantitative polymerase chain reaction

SA:

Salicylic acid

References

  1. Ricci M, Bellaby P, Flynn R (2007) Stakeholders’ and publics’ perceptions of hydrogen energy technologies. In: Flynn R, Bellaby P (eds) Risk and the public acceptance of new technologies. Palgrave Macmillan, New York, pp. 175–197

    Chapter  Google Scholar 

  2. Wulff BB, Horvath DM, Ward ER (2011) Improving immunity in crops: new tactics in an old game. Curr Opin Plant Biol 14(4):468–476

    Article  CAS  PubMed  Google Scholar 

  3. Tewari JP, Dwivedi HD, Pathak M, Srivastava SK (2007) Incidence of a mosaic disease in Jatropha curcas L. from eastern Uttar Pradesh. Curr Sci 93:1048–1049

    Google Scholar 

  4. Aswatha Narayana DS, Rangaswamy KS, Shankarappa MN, Maruthi MN, Reddy CNL, Rekha AR, Murthy KVK (2007) Distinct Begmoviruses closely related to cassava mosaic viruses causes Indian Jatropha mosaic disease. Int J Virol 3:1–11

    Article  Google Scholar 

  5. Raj SK, Kumar S, Snehi SK, Pathre U (2008) First report of cucumber mosaic virus on Jatropha curcas L. In India. Plant Dis 92:171

    Article  Google Scholar 

  6. Ramkat RC, Calari A, Maghuly F, Laimer M (2011) Biotechnological approaches to determine the impact of viruses in the energy crop plant Jatropha curcas. Virol J 8:386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kashina BD, Alegbejo MD, Banwo OO, Nielsen SL, Nicolaisen M (2013) Molecular identification of a new begomovirus associated with mosaic disease of Jatropha curcas L. in Nigeria. Arch Virol 158:511–514

    Article  CAS  PubMed  Google Scholar 

  8. Góngora-Castillo E, Ibarra-Laclette E, Trejo-Saavedra DL, Rivera-Bustamante RF (2012) Transcriptome analysis of symptomatic and recovered leaves of geminivirus-infected pepper (Capsicum annuum). Virol J 9:295

    Article  PubMed  PubMed Central  Google Scholar 

  9. Allie F, Pierce EJ, Okoniewski MJ, Rey MEC (2014) Transcriptional analysis of South African cassava mosaic virus-infected susceptible and tolerant landraces of cassava highlights differences in resistance, basal defense and cell wall associated genes during infection. BMC Genomics 15:1006

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lu J, Du ZX, Kong J, Chen LN, Qiu YH, Li GF, Meng XH, Zhu SF (2012) Transcriptome analysis of Nicotiana tabacum infected by Cucumber mosaic virus during systemic symptom development. PLoS One 7:e43447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu J, Yang J, Bi H, Zhang P (2014) Why mosaic? Gene expression profiling of African cassava mosaic virus-infected cassava reveals the effect of chlorophyll degradation on symptom development. J Integr Plant Biol 56(2):122–132

    Article  CAS  PubMed  Google Scholar 

  12. Choi H, Jo Y, Lian S, Jo KM, Chu H, et al. (2015) Comparative analysis of chrysanthemum transcriptome in response to three RNA viruses: cucumber mosaic virus, tomato spotted wilt virus and potato virus X. Plant Mol Biol 88(3):233–248

    Article  CAS  PubMed  Google Scholar 

  13. Cho WK, Lian S, Kim SM, Seo BY, Jung JK, Kim KH (2015) Time-course RNA-Seq analysis reveals transcriptional changes in rice plants triggered by rice stripe virus infection. PLoS One 10(8):e0136736

    Article  PubMed  PubMed Central  Google Scholar 

  14. Postnikova OA, Hult M, Shao J, Skantar A, Nemchinov LG (2015) Transcriptome analysis of resistant and susceptible alfalfa cultivars infected with root-knot nematode Meloidogyne incognita. PLoS One 10(2):e0118269

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fan H, Zhang Y, Sun H, Liu J, Wang Y, Wang X, et al. (2015) Transcriptome analysis of Beta macrocarpa and identification of differentially expressed transcripts in response to beet necrotic yellow vein virus infection. PLoS One 10(7):e0132277

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ishihara T, Mitsuhara I, Takahashi H, Nakaho K (2012) Transcriptome analysis of quantitative resistance-specific response upon Ralstonia solanacearum infection in tomato. PLoS One 7(10):e46763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu JJ, Sturrock RN, Benton R (2013) Transcriptome analysis of Pinus monticola primary needles by RNA-seq provides novel insight into host resistance to Cronartium ribicola. BMC Genomics 14:884

    Article  PubMed  PubMed Central  Google Scholar 

  18. Costa GGL, Cardoso KC, Del Bem LEV, Lima AC, Cunha MAS, de Campos-Leite L, Vicentini R, Papes F, Moreira RC, Yunes JA, Campos FAP, Da Silva MJ (2010) Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L. BMC Genomics 11:462

    Article  PubMed  PubMed Central  Google Scholar 

  19. King AJ, Li Y, Graham IA (2011) Profiling the developing Jatropha curcas L. seed transcriptome by pyrosequencing. Bioenerg Res 4:211–221

    Article  Google Scholar 

  20. Wang H, Zou Z, Wang S, Gong M (2013) Global analysis of transcriptome responses and gene expression profiles to cold stress of Jatropha curcas L. PLoS One 8:e82817

    Article  PubMed  PubMed Central  Google Scholar 

  21. Juntawong P, Sirikhachornkit A, Pimjan R, et al. (2014) Elucidation of the molecular responses to waterlogging in Jatropha roots by transcriptome profiling. Front Plant Sci 5:658

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pan BZ, Chen MS, Ni J, Xu ZF (2014) Transcriptome of the inflorescence meristems of the biofuel plant Jatropha curcas treated with cytokinin. BMC Genomics 15(1):974

    Article  PubMed  PubMed Central  Google Scholar 

  23. Polston JE, Londoño MA, Capobianco H (2014) The complete genome sequence of new world Jatropha mosaic virus. Arch Virol 159(11):3131–3136

    Article  CAS  PubMed  Google Scholar 

  24. Sato S, Hirakawa H, Isobe S, et al. (2011) Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 18:65–76

    Article  CAS  PubMed  Google Scholar 

  25. Sood A, Jaiswal V, Chanumolu SK, Malhotra N, Pal T, Chauhan RS (2014) Mining whole genomes and transcriptomes of Jatropha (Jatropha curcas) and Castor bean (Ricinus communis) for NBS-LRR genes and defense response associated transcription factors. Mol Biol Rep 41(11):7683–7695

    Article  CAS  PubMed  Google Scholar 

  26. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676

    Article  CAS  PubMed  Google Scholar 

  27. Stuart J, Segal E, Koller D, Kim S (2003) A gene co-expression network for global discovery of conserved genetic modules. Science 302(5643):249–255

    Article  CAS  PubMed  Google Scholar 

  28. Gao S, Qu J, Chua NH, Ye J (2010) A new strain of Indian cassava mosaic virus causes a mosaic disease in the biodiesel crop Jatropha curcas L. Arch Virol 155:607–612

    Article  CAS  PubMed  Google Scholar 

  29. Jayanna K (2006) Studies on Jatropha mosaic virus disease. M.Sc. Dissertation, University of Agricultural Sciences, Dharwad

  30. Satoh K, Kondoh H, Sasaya T, Shimizu T, Choi IR, Omura T, Kikuchi S (2010) Selective modification of rice (Oryza sativa) gene expression by rice stripe virus infection. J Gen Virol 91(1):294–305

    Article  CAS  PubMed  Google Scholar 

  31. Mardi M, Farsad LK, Gharechahi J, Salekdeh GH (2015) In-depth transcriptome sequencing of Mexican lime trees infected with candidatus Phytoplasma aurantifolia. PLoS One 10(7):e0130425

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cassone BJ, Wijeratne S, Michel AP, et al. (2014) Virus-independent and common transcriptome responses of leafhopper vectors feeding on maize infected with semi-persistently and persistent propagatively transmitted viruses. BMC Genomics 15(1):133

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nielsen E, Cheung AY, Ueda T (2008) The regulatory RAB and ARF GTPases for vesicular trafficking. Plant Physiol 147:1516–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Haupt S, Cowan GH, Ziegler A, Roberts AG, Oparka KJ, Torrance L (2005) Two plant-viral movement proteins traffic in the endocytic recycling pathway. Plant Cell 17:164–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sen A, Madhivanan K, Mukherjee D, et al. (2012) The epsin protein family: coordinators of endocytosis and signaling. Biomol Concepts 3:117–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Signorelli S, Coitiño EL, Borsani O, Monza J (2014) Molecular mechanisms for the reaction between _OH radicals and proline: insights on the role as reactive oxygen species scavenger in plant stress. J Phys Chem 118:37–47

    Article  CAS  Google Scholar 

  37. Guo FQ, Crawford NM (2005) Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell 17:3436–3450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vlad F, Spano T, Vlad D, Daher FB, Ouelhadj A, Kalatizis P (2007) Arabidopsis prolyl 4- hydroxylase are differentially expressed in response to hypoxia, anoxia and mechanical wounding. Physiol Plant 130:471–483

    Article  CAS  Google Scholar 

  39. Agudelo-Romero P, Carbonell P, de la Iglesia F, Carrera J, Rodrigo G, Jaramillo A, Perez-Amador MA, Elena SF (2008) Changes in the gene expression profile of Arabidopsis thaliana after infection with Tobacco etch virus. Virol J 5:92

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dubey NK, Goel R, Ranjan A, Idris A, Singh SK, Bag SK, Chandrashekar K, Pandey KD, Singh PK, Sawant SV (2013) Comparative transcriptome analysis of Gossypium hirsutum L. In response to sap sucking insects: aphid and whitefly. BMC Genomics 14:241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pavet V, Olmos E, Kiddle G, Mowla S, Kumar S, Antoniw J, Alvarez ME, Foyer CH (2005) Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis. Plant Physiol 139:1291–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Laxalt AM, Munnik T (2002) Phospholipid signalling in plant defence. Curr Opin Plant Biol 5:332–338

    Article  CAS  PubMed  Google Scholar 

  43. Thomma BP, Penninckx IA, Broekaert WF, Cammue BP (2001) The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13:63–68

    Article  CAS  PubMed  Google Scholar 

  44. Freitas-Astúa J, Bastianel M, Locali-Fabris EC, et al. (2007) Differentially expressed stress-related genes in the compatible citrus–citrus leprosis virus interaction. Genet Mol Biol 30:980–1018

    Article  Google Scholar 

  45. Breuer G, de Jaeger L, Artus VP, Martens DE, Springer J, Draaisma RB, Eggink G, Wijffels RH, Lamers PP (2014) Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (II) evaluation of TAG yield and productivity in controlled photobioreactors. Biotech Biofuels 7:1–11

    Article  Google Scholar 

  46. Fan J, Yan C, Andre C, Shanklin J, Schwender J, Xu C (2012) Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii. Plant Cell Physiol 53:1380–1390

    Article  CAS  PubMed  Google Scholar 

  47. Molhoj M, Verma R, Reiter WD (2004) The biosynthesis of d-galacturonate in plants. Functional cloning and characterization of a membrane-anchored UDP-d-glucuronate 4-epimerase from Arabidopsis. Plant Physiol 135:1221–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Burget EG, Verma R, Mølhøj M, Reiter WD (2003) The biosynthesis of l-arabinose in plants: molecular cloning and characterization of a Golgi-localized UDP-d-xylose 4-epimerase encoded by the MUR4-gene of Arabidopsis. Plant Cell 15:523–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li R, Tee CS, Jiang YL, Jiang XY, Venkatesh PN, Sarojam R, Ye J (2015) A terpenoid phytoalexin plays a role in basal defense of Nicotiana benthamiana against potato virus X. Sci Rep 5:9682

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pallas V, Garcia JA (2011) How do plant viruses induce disease? Interactions and interference with host components. J Gen Virol 92:2691–2705

    Article  CAS  PubMed  Google Scholar 

  51. Maruthi MN, Bouvaine S, Tufan HA, Mohammed IU, Hillocks RJ (2014) Transcriptional response of virus-infected cassava and identification of putative sources of resistance for cassava brown streak disease. PLoS One 9(5):e96642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Whenham RJ, Fraser RSS (1980) Stimulation by abscisic acid of RNA synthesis in discs from healthy and tobacco mosaic virus-infected tobacco leaves. Planta 150:349–353

    Article  CAS  PubMed  Google Scholar 

  53. Pennazio S, Roggero P (1996) Plant hormones and plant virus diseases. The auxins Microbiologica 19:369–378

    CAS  PubMed  Google Scholar 

  54. Alazem M, Lin K-Y, Lin N-S (2014) The abscisic acid pathway has multifaceted effects on the accumulation of Bamboo mosaic virus. Mol Plant-Microbe Interact 27:177–189

    Article  CAS  PubMed  Google Scholar 

  55. Casteel C, De Alwis M, Bak A, Dong H, Steven A, Jander G (2015) Disruption of ethylene responses by turnip mosaic virus mediates suppression of plant defense against the aphid vector, Myzus persicae. Plant Physiol 169:209–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Qi T, Song S, Ren Q, Wu D, Huang H, Chen Y, Fan M, Peng W, Ren C, Xie D (2011) The jasmonate-ZIM-domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23:1798–1814

    Article  Google Scholar 

  57. Tokutsu R, Teramoto H, Takahashi Y, Ono T, Minagawa J (2003) The light-harvesting complex of photosystem I in Chlamydomonas reinhardtii: protein composition, gene structures and phylogenic implications. Plant Cell Physiol 45:138–145

    Article  Google Scholar 

  58. Fukuyama K (2004) Structure and function of plant-type ferredoxins. Photosynth Res 81:289–301

    Article  CAS  PubMed  Google Scholar 

  59. Johnson X, Alric J (2013) Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. Eukaryot Cell 12(6):776–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang HZ, Zhao PJ, Xu JC, et al. (2003) Virus resistance in transgenic watermelon plants containing a WMV-2 coat protein gene. Acta Genet Sin 30:70–75

    CAS  PubMed  Google Scholar 

  61. Weng K, Li ZQ, Liu RQ, Wang L, Wang YJ, Xu Y (2014) Transcriptome of Erysiphe necator-infected Vitis pseudoreticulata leaves provides insight into grapevine resistance to powdery mildew. Horti Res 1:14049

    Article  Google Scholar 

  62. Lev-Yadun S, Gould KS (2009) Role of anthocyanins in plant defense. In: Gould KS, Davies KM, Winefield C (eds) Life’s colorful solutions: the biosynthesis, functions, and applications of anthocyanins. Springer, Berlin, pp. 21–48

    Google Scholar 

  63. Kaplan B, Sherman T, Fromm H (2007) Cyclic nucleotide-gated channels in plants. FEBS Lett 581(12):2237–2246

    Article  CAS  PubMed  Google Scholar 

  64. Moeder W, Urquhart W, Ung H, Yoshioka K (2011) The role of cyclic nucleotide gated ion channels in plant immunity. Mol Plant 4:442–452

    Article  CAS  PubMed  Google Scholar 

  65. Chin K, DeFalco TA, Moeder W, Yoshioka K (2013) The Arabidopsis cyclic nucleotide-gated ion channels AtCNGC2 and AtCNGC4 work in the same signaling pathway to regulate pathogen defense and floral transition. Plant Physiol 163:611–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Reddy ASN, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cheval C, Aldon D, Galaud JP, Ranty B (2013) Calcium/calmodulin-mediated regulation of plant immunity. Biochim Biophys Acta 1833:1766–1771

    Article  CAS  PubMed  Google Scholar 

  68. Pedley KF, Martin GB (2005) Role of mitogen-activated protein kinases in plant immunity. Curr Opin Plant Biol 8:541–547

    Article  CAS  PubMed  Google Scholar 

  69. Tena G, Boudsocq M, Sheen J (2011) Protein kinase signaling networks in plant innate immunity. Curr Opin Plant Biol 14:519–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Singh P, Zimmerli L (2013) Lectin receptor kinases in plant innate immunity. Front Plant Sci 4:1–4

    Article  CAS  Google Scholar 

  71. Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Eulgem T (2005) Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci 10:71–78

    Article  CAS  PubMed  Google Scholar 

  73. Zhang L, Du L, Poovaiah BW (2014) Calcium signaling and biotic defense responses in plants. Plant Signal Behav 9(11):e973818

    Article  PubMed  PubMed Central  Google Scholar 

  74. Resh MD (2006) Palmitoylation of ligands, receptors, and intracellular signaling molecules. Sci STKE 2006:re14

    Article  PubMed  Google Scholar 

  75. Wang RY, Li K (2012) Host factors in the replication of positive-strand RNA viruses. Chang Gung Med J 35:111–124

    CAS  PubMed  Google Scholar 

  76. Agbeci M, Grangeon R, Nelson RS, et al. (2013) Contribution of host intracellular transport machineries to intercellular movement of Turnip mosaic virus. PLoS Pathog 9:e1003683

    Article  PubMed  PubMed Central  Google Scholar 

  77. Jakubiec A, Notaise J, Tournier V, Hericourt F, Block MA, Drugeon G, van Aelst L, Jupin I (2004) Assembly of turnip yellow mosaic virus replication complexes: interaction between the proteinase and polymerase domains of the replication proteins. J Virol 78:7945–7957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bilgin D, Zavala J, Zhu J, Clough S, Ort D, DeLucia E (2010) Biotic stress globally downregulates photosynthesis genes. Plant Cell Environ 33(10):1597–1613

    Article  CAS  PubMed  Google Scholar 

  79. Kwon C, Bednarek P, Schulze-Lefert P (2008) Secretory pathways in plant immune responses. Plant Physiol 147:1575–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Leal LG, L’opez C, L’opez-Kleine L (2014) Construction and comparison of gene co-expression networks shows complex plant immune responses. Peer J 2:e610

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zheng ZL, Zhao Y (2013) Transcriptome comparison and gene co-expression network analysis provide a systems view of citrus response to ‘Candidatus Liberibacter asiaticus’ infection. BMC Genomics 14:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tully JP, Hill AE, Ahmed HM, Whitley R, Skjellum A, Mukhtar MS (2014) Expression-based network biology identifies immune-related functional modules involved in plant defense. BMC Genomics 15:421

    Article  PubMed  PubMed Central  Google Scholar 

  83. Łabaj P, Leparc G, Linggi B, Markillie L, Wiley H, Kreil D (2011) Characterization and improvement of RNA-seq precision in quantitative transcript expression profiling. Bioinformatics 27(13):i383–i391

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Mr. Ankush Bansal (Jaypee University of Information Technology) for assisting in the coexpression network analysis and Mr. Tarun Pal (Jaypee University of Information Technology) for assisting in maintaining transcriptome data in the in-house web server. Financial support from the Department of Biotechnology (DBT), Govt. of India, to RSC in the form of a R&D project on Jatropha curcas is also acknowledged. The authors are also thankful to Dr. Sandeep Sharma, Scientist, Himalayan Forest Research Institute (HFRI), Shimla, India, for providing experimental farm facilities.

Availability of Transcriptome Data

The raw reads and annotated data, i.e., CDSs for JH and JV are available at http://14.139.240.55/NGS/download.php.

Author Contribution

AS and RSC defined the research theme and designed experiments. AS performed experiments and in silico analysis. AS and RSC wrote the manuscript and discussed analysis. Both authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajinder Singh Chauhan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 77 kb)

ESM 2

(DOCX 796 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sood, A., Chauhan, R.S. Comparative NGS Transcriptomics Unravels Molecular Components Associated with Mosaic Virus Infection in a Bioenergy Plant Species, Jatropha curcas L.. Bioenerg. Res. 10, 129–145 (2017). https://doi.org/10.1007/s12155-016-9783-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-016-9783-6

Keywords