Skip to main content

Methane Yield and Feed Quality Parameters of Mixed Silages from Maize (Zea mays L.) and Common Bean (Phaseolus vulgaris L.)

Abstract

European agricultural policy increasingly focuses on environmental friendly cropping systems. Intercropping of maize (Zea mays L.) and common beans (Phaseolus vulgaris L.) has been suggested as an alternative cropping system with environmental benefits. The aim of this study was to assess methane yield potential of mixed silages. Based on material from two field experiments at three sites in Germany, mixed silages were produced with proportions of individual components varying from 0 to 100 % of fresh matter in increments of 12.5 %. Chemical parameters (neutral detergent fiber (NDF), acid detergent fiber (ADF), crude protein (XP), starch, sugar, and crude fat) were determined, and batch tests were performed to measure methane yield potential from silages. With increasing bean proportion, concentrations of XP increased while NDF, methane yield, and methane content decreased. While methane yield showed a negative relationship with XP content (R 2 = 0.56***), a positive relation was found with NDF (R 2 = 0.55***). The reduction of methane yield of circa 1 L of methane per each additional bean percentage in the silages could not be explained by the chemical parameters of the silages. It is hypothesized that other chemical compounds, such as lectins, which were not determined in the present study, may have influenced methane production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

ADF:

Acid detergent fiber

DM:

Dry matter

FM:

Fresh matter

NDF:

Neutral detergent fiber

VS:

Volatile solids

XP:

Crude protein

References

  1. EU (2013) Regulation (EU) No 1305/2013. http://eur-lex.europa.eu/legal-content/de/TXT/?uri=CELEX:32013R1305

  2. Legume Futures 2014 Legume-supported cropping systems for Europe. General project report. www.legumefutures.de. Accessed 25 May 2016

  3. FNR (2016) Fachagentur Nachwachsende Rohstoffe. http://biogas.fnr.de/. Accessed 15 Mar 2016

  4. Herrmann A, Rath J (2012) Biogas production from maize: current state, challenges, and prospects. 1. Methane yield potential. Bioenergy Res 5(4):1027–1042. doi:10.1007/s12155-012-9202-6

    Article  CAS  Google Scholar 

  5. Koschke L, Fürst C, Lorenz M, et al. (2013) The integration of crop rotation and tillage practices in the assessment of ecosystem services provision at the regional scale. Ecol Indic 32:157–171. doi:10.1016/j.ecolind.2013.03.008

    Article  Google Scholar 

  6. Herrmann C, Idler C, Heiermann M (2016) Biogas crops grown in energy crop rotations: linking chemical composition and methane production characteristics. Bioresour Technol 206:23–35. doi:10.1016/j.biortech.2016.01.058

    Article  CAS  PubMed  Google Scholar 

  7. Graß R. (2003) Direkt- und Spätsaat von Silomais - Ein neues Anbausystem zur Reduzierung von Umweltgefährdungen und Anbauproblemen bei Optimierung der Erträge., University of Kassel

  8. Dawo MI, Wilkinson JM, Sanders FET, et al. (2007) The yield and quality of fresh and ensiled plant material from intercropped maize (Zea mays) and beans (Phaseolus vulgaris). J Sci Food Agric 87(7):1391–1399. doi:10.1002/jsfa.2879

    Article  CAS  Google Scholar 

  9. Graß R, Heuser F, Stülpnagel R, et al. (2013) Energy crop production in double-cropping systems: results from an experiment at seven sites. Eur J Agron 51:120–129. doi:10.1016/j.eja.2013.08.004

    Article  Google Scholar 

  10. Andersen MK, Hauggaard-Nielsen H, Ambus P, et al. (2005) Biomass production, symbiotic nitrogen fixation and inorganic N use in dual and tri-component annual intercrops. Plant Soil 266(1–2):273–287. doi:10.1007/s11104-005-0997-1

    Article  Google Scholar 

  11. Lupwayi NZ, Kennedy AC (2007) Grain legumes in northern Great Plains. Agron J 99(6):1700. doi:10.2134/agronj2006.0313s

    Article  CAS  Google Scholar 

  12. Mustafa AF, Seguin P (2003) Characteristics and in situ degradability of whole crop faba bean, pea, and soybean silages. Can J Anim Sci 83(4):793–799. doi:10.4141/A03-065

    Article  Google Scholar 

  13. Dawo MI, Wilkinson JM, Pilbeam DJ (2009) Interactions between plants in intercropped maize and common bean. J Sci Food Agric 89(1):41–48. doi:10.1002/jsfa.3408

    Article  CAS  Google Scholar 

  14. Contreras-Govea FE, Muck RE, Armstrong KL, et al. (2009) Nutritive value of corn silage in mixture with climbing beans. Anim Feed Sci Technol 150(1–2):1–8. doi:10.1016/j.anifeedsci.2008.07.001

    Article  CAS  Google Scholar 

  15. Demirel B, Scherer P (2011) Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass Bioenergy 35(3):992–998. doi:10.1016/j.biombioe.2010.12.022

    Article  CAS  Google Scholar 

  16. Evranos B, Demirel B (2015) The impact of Ni, Co and Mo supplementation on methane yield from anaerobic mono-digestion of maize silage. Environ Technol 36(12):1556–1562. doi:10.1080/09593330.2014.997297

    Article  CAS  PubMed  Google Scholar 

  17. Nges IA, Björnsson L (2012) High methane yields and stable operation during anaerobic digestion of nutrient-supplemented energy crop mixtures. Biomass Bioenergy 47:62–70. doi:10.1016/j.biombioe.2012.10.002

    Article  CAS  Google Scholar 

  18. Romero-Güiza MS, Vila J, Mata-Alvarez J, et al. (2016) The role of additives on anaerobic digestion: a review. Renew Sust Energ Rev 58:1486–1499. doi:10.1016/j.rser.2015.12.094

    Article  Google Scholar 

  19. de Wit CT (1960) On competition. Versl Landbouwkd Onderz 66:1–82

    Google Scholar 

  20. Trenbath BR (1974) Biomass productivity of mixtures. In: Brady NC (ed) Advances in agronomy, vol 26. Academic Press, New York, pp. 177–210

    Google Scholar 

  21. Cousens R (1991) Aspects of the design and interpretation of competition (interference) experiments. Weed Technol 5(3):664–673

    Google Scholar 

  22. Gibson DJ, Connolly J, Hartnett DC, et al. (1999) Designs for greenhouse studies of interactions between plants. J Ecol 87(1):1–16. doi:10.1046/j.1365-2745.1999.00321.x

    Article  Google Scholar 

  23. Jolliffe PA (2000) The replacement series 371–385

  24. van Schoonhoven A, Pastor-Corrales MA (1987) Standard system for the evaluation of bean germplasm. Centro Internacional de Agricultura Tropical, Cali, Colombia

  25. Meier U (ed) (2001) Growth stages of mono-and dicotyledonous plants. Federal Biological Research Centre for Agriculture and Forestry, Bonn. http://www.jki.bund.de/fileadmin/dam_uploads/_veroeff/bbch/BBCH-Skala_englisch.pdf Accessed 18 July 2016

  26. VDI 4630 Vergärung organischer Stoffe; Substratcharakterisierung, Probenahme, Stoffdatenerhebung, Gärversuche. https://www.vdi.de/technik/fachthemen/energie-und-umwelt/fachbereiche/energiewandlung-und-anwendung/richtlinien/vdi-4630/. Accessed 15 Mar 2016

  27. Zerr W (2006) Versuchsanlage zur energetischen Beurteilung von Substraten und Kofermentaten für Biogasanlagen. Umweltwissenschaften und Schadstoff-Forschung 18(4):219–227. doi:10.1065/uwsf2006.03.117

    Article  CAS  Google Scholar 

  28. Weißbach, F., Kuhla, S. (1995) Substance losses in determining the dry matter content of silage and green fodder: arising errors and possibilities of correction. Übersicht Tierernähr 23

  29. Naumann C, Bassler R, Seibold R, et al. (1976) Methodenbuch. Band III, band III. VDLUFA - Verlag, Darmstadt

    Google Scholar 

  30. R Core Team (2016) R: a language and environment for statistical computing. https://www.R-project.org

  31. Donoso-Bravo A, Pérez-Elvira SI, Fdz-Polanco F (2010) Application of simplified models for anaerobic biodegradability tests. Evaluation of pre-treatment processes. Chem Eng J 160(2):607–614. doi:10.1016/j.cej.2010.03.082

    Article  CAS  Google Scholar 

  32. SigmaPlot. Systat Software, Inc., San Jose California, USA. www.systatsoftware.com

  33. Titterton M, Maasdorp BV (1997) Nutritional improvement of maize silage for dairying: mixed crop silages from sole and intercropped legumes and a long season variety of maize. 2. Ensilage. Anim Feed Sci Technol 69(1–3):263–270. doi:10.1016/S0377-8401(97)81640-9

    Article  Google Scholar 

  34. Armstrong KL, Albrecht KA, Lauer JG, et al. (2008) Intercropping corn with lablab bean, velvet bean, and scarlet runner bean for forage. Crop Sci 48(1):371. doi:10.2135/cropsci2007.04.0244

    Article  Google Scholar 

  35. Mustafa AF, Christensen DA, McKinnon JJ (2000) Effects of pea, barley, and alfalfa silage on ruminal nutrient degradability and performance of dairy cows. J Dairy Sci 83(12):2859–2865. doi:10.3168/jds.S0022-0302(00)75186-1

    Article  CAS  PubMed  Google Scholar 

  36. Mustafa AF, Seguin P, Ouellet DR, et al. (2002) Effects of cultivars on ensiling characteristics, chemical composition, and ruminal degradability of pea silage. J Dairy Sci 85(12):3411–3419. doi:10.3168/jds.S0022-0302(02)74429-9

    Article  CAS  PubMed  Google Scholar 

  37. Anil L, Park J, Phipps R (2000) The potential of forage–maize intercrops in ruminant nutrition. Anim Feed Sci Technol 86(3–4):157–164. doi:10.1016/S0377-8401(00)00176-0

    Article  Google Scholar 

  38. Contreras-Govea FE, Muck RE, Armstrong KL, et al. (2009) Fermentability of corn–lablab bean mixtures from different planting densities. Anim Feed Sci Technol 149(3–4):298–306. doi:10.1016/j.anifeedsci.2008.05.009

    Article  CAS  Google Scholar 

  39. Fischer J, Böhm H (2013) Ertrag und Futterwert von Mais-Bohnen Gemengen als Ganzpflanzensilage in der Milchviehfütterung

  40. Dandikas V, Heuwinkel H, Lichti F, et al. (2014) Correlation between biogas yield and chemical composition of energy crops. Bioresour Technol 174:316–320. doi:10.1016/j.biortech.2014.10.019

    Article  CAS  PubMed  Google Scholar 

  41. Appels L, Lauwers J, Degrève J, et al. (2011) Anaerobic digestion in global bio-energy production: potential and research challenges. Renew Sust Energ Rev 15(9):4295–4301. doi:10.1016/j.rser.2011.07.121

    Article  CAS  Google Scholar 

  42. Mudhoo A, Kumar S (2013) Effects of heavy metals as stress factors on anaerobic digestion processes and biogas production from biomass. Int J Environ Sci Technol 10(6):1383–1398. doi:10.1007/s13762-012-0167-y

    Article  CAS  Google Scholar 

  43. Hilpert R, Winter J, Kandler O (1984) Agricultural feed additives and disinfectants as inhibitory factors in anaerobic digestion. Agric Wastes 10(2):103–116. doi:10.1016/0141-4607(84)90010-6

    Article  CAS  Google Scholar 

  44. Slifkin M, Doyle R.J. (1990) Lectins and their application to clinical microbiology 197–218

  45. Vasconcelos IM, Oliveira JTA (2004) Antinutritional properties of plant lectins. Toxicon 44(4):385–403. doi:10.1016/j.toxicon.2004.05.005

    Article  CAS  PubMed  Google Scholar 

  46. Sadananda T.S, Govindappa M, Ramachandra Y.L. (2013) Antibacterial activity of Viscum album endophytic fungal lectin 1033–1042

  47. Nader N, Hanen BI, Fatma B et al. (2015) In vitro assessment of Phaseolus vulgaris L. lectins activities against various pathogenic and beneficial microbes 37–47

  48. Muzquiz M, Burbano C, Ayet G, et al. (1999) The investigation of antinutritional factors in Phaseolus vulgaris. Environmental and varietal differences. Biotechnol Agron Soc Environ 3(4):210–216

    Google Scholar 

  49. Makkar, B, Abel et al. (1997) Nutrient contents, rumen protein degradability and antinutritional factors in some colour- and white-flowering cultivars of Vicia faba beans 511–520

  50. Rath J, Heuwinkel H, Herrmann A (2013) Specific biogas yield of maize can Be predicted by the interaction of four biochemical constituents. Bioenergy Res 6(3):939–952. doi:10.1007/s12155-013-9318-3

    Article  CAS  Google Scholar 

  51. Gunaseelan VN (2007) Regression models of ultimate methane yields of fruits and vegetable solid wastes, sorghum and napiergrass on chemical composition. Bioresour Technol 98(6):1270–1277. doi:10.1016/j.biortech.2006.05.014

    Article  CAS  PubMed  Google Scholar 

  52. Amon T, Amon B, Kryvoruchko V, et al. (2007) Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour Technol 98(17):3204–3212. doi:10.1016/j.biortech.2006.07.007

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liina Nurk.

Additional information

• Multi-site experiment with two different bean cultivars in two different years

• Mixed silages of maize and beans were produced using a replacement series setting with proportions of individual components in the mixture varying from 0 to 100 % of fresh matter

• Strong decline of specific methane yield with increasing bean proportion in silages

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nurk, L., Graβ, R., Pekrun, C. et al. Methane Yield and Feed Quality Parameters of Mixed Silages from Maize (Zea mays L.) and Common Bean (Phaseolus vulgaris L.). Bioenerg. Res. 10, 64–73 (2017). https://doi.org/10.1007/s12155-016-9779-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-016-9779-2

Keywords

  • Intercrop silages of maize and beans
  • Biogas batch test
  • Methane yield