BioEnergy Research

, Volume 9, Issue 4, pp 1241–1259 | Cite as

QTL and Drought Effects on Leaf Physiology in Lowland Panicum virgatum

  • Samuel H. Taylor
  • David B. Lowry
  • Michael J. Aspinwall
  • Jason E. Bonnette
  • Philip A. Fay
  • Thomas E. Juenger


Switchgrass is a key component of plans to develop sustainable cellulosic ethanol production for bioenergy in the USA. We sought quantitative trait loci (QTL) for leaf structure and function, using the Albany full-sib mapping population, an F1 derived from lowland tetraploid parents. We also assessed both genotype × environment interactions (G×E) in response to drought and spatial trends within experimental plots, using the mapping population and check clones drawn from the parent cultivars. Phenotypes for leaf structure and physiological performance were determined under well-watered conditions in two consecutive years, and we applied drought to one of two replicates to test for G×E. Phenotypes for check clones varied with location in our plot and were impacted by drought, but there was limited evidence of G×E except in quantum yield (ΦPSII). Phenotypes of Albany were also influenced by plant location within our plot, and after correcting for experimental design factors and spatial effects, we detected QTL for leaf size, tissue density (LMA), and stomatal conductance (g s ). Clear evidence of G×E was detected at a QTL for intrinsic water use efficiency (iWUE) that was expressed only under drought. Loci influencing physiological traits had small additive effects, showed complex patterns of heritability, and did not co-localize with QTL for morphological traits. These insights into the genetic architecture of leaf structure and function set the stage for consideration of leaf physiological phenotypes as a component of switchgrass improvement for bioenergy purposes.


Switchgrass Panicum virgatum Photosynthesis QTL Genotype × environment Water use efficiency 



The authors thank two anonymous reviewers and M.D. Casler for their editorial comments. We wish to thank T.S. Quedensley for assistance with clonal propagation and planting and A. Asmus for technical assistance; W. Skillern, D. Dillon, L. Taranow, Ca. Timmerman, Co. Timmerman, A. Hiers, L. Villareal, C. Lee, all students in the Freshman Research Initiative, and E. Worchel helped to collect physiological measurements. John Crutchfield and the staff of Brackenridge Field Labs were invaluable resources, particularly during construction and development of the experimental rainout shelters utilized in the study. This study was funded by a National Science Foundation Plant Genome Research Program grant to TEJ and PAF (NSF IOS-0922457). A US Department of Agriculture-Agriculture and Food Research Initiative Postdoctoral Fellowship (2011-67012-30696) supported DBL during the time that the experiments were being conducted. SHT was supported by Bowdoin College during data analysis and manuscript preparation.

Supplementary material

12155_2016_9768_MOESM1_ESM.docx (66 kb)
ESM 1 (DOCX 66.2 kb)


  1. 1.
    U.S. Congress (2007) Energy independence and security act of 2007. Public Law 1492–1801. doi: papers2://publication/uuid/364DB882-E966-450B-959F-AEAD6E702F42Google Scholar
  2. 2.
    Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Energy. Beneficial biofuels--the food, energy, and environment trilemma. Science 325:270–271. doi: 10.1126/science.1177970 CrossRefPubMedGoogle Scholar
  3. 3.
    Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T-H (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240. doi: 10.1126/science.1151861 CrossRefPubMedGoogle Scholar
  4. 4.
    Gregory PJ, George TS (2011) Feeding nine billion: the challenge to sustainable crop production. J Exp Bot 62:5233–5239. doi: 10.1093/jxb/err232 CrossRefPubMedGoogle Scholar
  5. 5.
    Denison RF (2012) Darwinian agriculture: how understanding evolution can improve agriculture. Princeton University Press, PrincetonGoogle Scholar
  6. 6.
    Wullschleger SD, Davis EB, Borsuk ME, Gunderson CA, Lynd LR (2010) Biomass production in switchgrass across the United States: database description and determinants of yield. Agron J 102:1158–1168. doi: 10.2134/agronj2010.0087 CrossRefGoogle Scholar
  7. 7.
    Behrman KD, Kiniry JR, Winchell M, Juenger TE, Keitt TH (2013) Spatial forecasting of switchgrass productivity under current and future climate change scenarios. Ecol Appl 23:73–85CrossRefPubMedGoogle Scholar
  8. 8.
    Gelfand I, Sahajpal R, Zhang X, Izaurralde RC, Gross KL, Robertson GP (2013) Sustainable bioenergy production from marginal lands in the US Midwest. Nature 493:514–517. doi: 10.1038/nature11811 CrossRefPubMedGoogle Scholar
  9. 9.
    Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238. doi: 10.1126/science.1152747 CrossRefPubMedGoogle Scholar
  10. 10.
    Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Chang Biol 14:2000–2014. doi: 10.1111/j.1365-2486.2008.01662.x CrossRefGoogle Scholar
  11. 11.
    Sanderson MA, Adler PR, Boateng AA, Casler MD, Sarath G (2006) Switchgrass as a biofuels feedstock in the USA. Can J Plant Sci 86:1315–1325. doi: 10.4141/P06-136 CrossRefGoogle Scholar
  12. 12.
    Casler MD, Tobias CM, Kaeppler SM, Buell CR, Wang Z-Y, Cao P, Schmutz J, Ronald P (2011) The switchgrass genome: tools and strategies. Plant Genome 4:273. doi: 10.3835/plantgenome2011.10.0026 CrossRefGoogle Scholar
  13. 13.
    Vogel KP, Mitchell RB, Casler MD, Sarath G (2014) Registration of “liberty” switchgrass. J Plant Regist 8:242. doi: 10.3198/jpr2013.12.0076crc CrossRefGoogle Scholar
  14. 14.
    Cassida KA, Muir JP, Hussey MA, Read JC, Venuto BC, Ocumpaugh WR (2005) Biomass yield and stand characteristics of switchgrass in south central U.S. environments. Crop Sci 45:673. doi:  10.2135/cropsci2005.0673
  15. 15.
    Lemus R, Brummer EC, Moore KJ, Molstad NE, Burras CL, Barker MF (2002) Biomass yield and quality of 20 switchgrass populations in southern Iowa, USA. Biomass and Bioenergy 23:433–442CrossRefGoogle Scholar
  16. 16.
    Dohleman FG, Heaton EA, Leakey ADB, Long SP (2009) Does greater leaf-level photosynthesis explain the larger solar energy conversion efficiency of Miscanthus relative to switchgrass? Plant, Cell Environ 32:1525–1537. doi: 10.1111/j.1365-3040.2009.02017.x CrossRefGoogle Scholar
  17. 17.
    Zegada-Lizarazu W, Wullschleger SD, Nair SS, Monti A (2012) Crop Physiology. In: Monti A (ed) Switchgrass a valuable biomass crop for energy. Springer-Verlag, London, pp 55–86Google Scholar
  18. 18.
    Kiniry JR, Lynd L, Greene N, Johnson M-V V, Casler MD, Laser MS (2008) Biofuels and water use: comparison of maize and switchgrass and general perspectives. In: Wright JH, Evans DA (eds) New research on biofuels. Nova Science Publishers Inc., New-York, pp 17–30Google Scholar
  19. 19.
    Long SP, Farage PK, Garcia RL (2009) Measurement of leaf and canopy photosynthetic C02 exchange in the field. J Exp Bot 47:1629–1642CrossRefGoogle Scholar
  20. 20.
    Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668CrossRefPubMedGoogle Scholar
  21. 21.
    Farquhar GD, von Caemmerer S, Berry JA (2001) Models of photosynthesis. Plant Physiol 125:42–45CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827. doi: 10.1038/nature02403 CrossRefPubMedGoogle Scholar
  23. 23.
    Osnas JLD, Lichstein JW, Reich PB, Pacala SW (2013) Global leaf trait relationships: mass, area, and the leaf economics spectrum. Science 340:741–744. doi: 10.1126/science.1231574 CrossRefPubMedGoogle Scholar
  24. 24.
    Raschke K (1975) Stomatal action. Annu Rev Plant Physiol 26:309–340CrossRefGoogle Scholar
  25. 25.
    Jones HG (2014) Plants and microclimate: a quantitative approach to environmental plant physiology, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  26. 26.
    Nobel PS (2009) Physicochemical and environmental plant physiology, 4th edn. Academic Press, OxfordGoogle Scholar
  27. 27.
    Donovan LA, Maherali H, Caruso CM, Huber H, de Kroon H (2011) The evolution of the worldwide leaf economics spectrum. Trends Ecol Evol 26:88–95. doi: 10.1016/j.tree.2010.11.011 CrossRefPubMedGoogle Scholar
  28. 28.
    Richards RA, Rebetzke GJ, Condon AG, van Herwaarden AF (2002) Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereal. Crop Sci 42:111–121CrossRefPubMedGoogle Scholar
  29. 29.
    Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2002) Improving intrinsic water-use efficiency and crop yield. Crop Sci 42:122–131CrossRefPubMedGoogle Scholar
  30. 30.
    Donovan LA, Mason CM, Bowsher AW, Goolsby EW, Ishibashi CDA (2014) Ecological and evolutionary lability of plant traits affecting carbon and nutrient cycling. J Ecol 102:302–314. doi: 10.1111/1365-2745.12193 CrossRefGoogle Scholar
  31. 31.
    Mason CM, Goolsby EW, Humphreys DP, Donovan LA (2015) Phylogenetic structural equation modelling reveals no need for an “origin” of the leaf economics spectrum. Ecol Lett 19:54–61. doi: 10.1111/ele.12542 CrossRefPubMedGoogle Scholar
  32. 32.
    Warner DA, Ku MSB, Edwards GE (1987) Photosynthesis, leaf anatomy, and cellular constituents in the polyploid C4 grass Panicum virgatum. Plant Physiol 84:461–466CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wullschleger SD, Sanderson MA, McLaughlin SB, Biradar DP, Rayburn AL (1996) Photosynthetic rates and ploidy levels among populations of switchgrass. Crop Sci 36:306–312CrossRefGoogle Scholar
  34. 34.
    Porter CL Jr (1966) An analysis of variation between upland and lowland switchgrass, Panicum virgatum L., in central Oklahoma. Ecology 47:980–992CrossRefGoogle Scholar
  35. 35.
    McMillan C (1959) The role of ecotypic variation in the distribution of the central grassland of North America. Ecol Monogr 29:286–308CrossRefGoogle Scholar
  36. 36.
    Lowry DB, Behrman KD, Grabowski P, Morris GP, Kiniry JR, Juenger TE (2014) Adaptations between ecotypes and along environmental gradients in Panicum virgatum. Am Nat 183:682–692. doi: 10.1086/675760 CrossRefPubMedGoogle Scholar
  37. 37.
    Casler MD, Vogel KP, Taliaferro CM, Wynia RL (2004) Latitudinal adaptation of switchgrass populations. Crop Sci 44:293–303CrossRefGoogle Scholar
  38. 38.
    Casler MD (2005) Ecotypic variation among switchgrass populations from the northern USA. Crop Sci 45:388–398CrossRefGoogle Scholar
  39. 39.
    Aspinwall MJ, Lowry DB, Taylor SH, Juenger TE, Hawkes CV, Johnson MV, Kiniry JR, Fay PA (2013) Genotypic variation in traits linked to climate and aboveground productivity in a widespread C4 grass: evidence for a functional trait syndrome. New Phytol 199:966–980. doi: 10.1111/nph.12341 CrossRefPubMedGoogle Scholar
  40. 40.
    Hartman JC, Nippert JB, Springer CJ (2012) Ecotypic responses of switchgrass to altered precipitation. Funct Plant Biol 39:126–136CrossRefGoogle Scholar
  41. 41.
    Casler MD (2012) Switchgrass breeding, genetics, and genomics. In: Monti A (ed) Switchgrass a valuable biomass crop for energy. Springer-Verlag, London, pp 29–53Google Scholar
  42. 42.
    Fiedler JD, Lanzatella CL, Okada M, Jenkins J, Schmutz J, Tobias CM (2015) High-density SNP linkage map of lowland switchgrass using genotyping by sequencing. Plant Genome 8. doi:  10.3835/plantgenome2014.10.0065
  43. 43.
    Li G, Serba DD, Saha MC, Bouton JH, Lanzatella CL, Tobias CM (2014) Genetic linkage mapping and transmission ratio distortion in a three-generation four-founder population of Panicum virgatum (L.). G3: Genes, Genomes, Genet 4:913–923. doi: 10.1534/g3.113.010165 CrossRefGoogle Scholar
  44. 44.
    Liu L, Wu Y, Wang Y, Samuels T (2012) A high-density simple sequence repeat-based genetic linkage map of switchgrass. G3: Genes, Genomes, Genet 2:357–370. doi: 10.1534/g3.111.001503 CrossRefGoogle Scholar
  45. 45.
    Milano ER (2015) The genetic architecture of quantitative traits in locally adapted plant ecotypes. Dissertation, University of Texas at Austin.Google Scholar
  46. 46.
    Missaoui AM, Paterson AH, Bouton JH (2005) Investigation of genomic organization in switchgrass (Panicum virgatum L.) using DNA markers. Theor Appl Genet 110:1372–1383CrossRefPubMedGoogle Scholar
  47. 47.
    Okada M, Lanzatella C, Saha MC, Bouton J, Wu R, Tobias CM (2010) Complete switchgrass genetic maps reveal subgenome collinearity, preferential pairing and multilocus interactions. Genetics 185:745–760. doi: 10.1534/genetics.110.113910 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Serba DD, Daverdin G, Bouton JH, Devos KM, Brummer EC, Saha MC (2014) Quantitative Trait Loci (QTL) underlying biomass yield and plant height in switchgrass. BioEnergy Res doi. doi: 10.1007/s12155-014-9523-8 Google Scholar
  49. 49.
    Lowry DB, Taylor SH, Bonnette J, Aspinwall MJ, Asmus AL, Keitt TH, Tobias CM, Juenger TE (2015) QTLs for biomass and developmental traits in switchgrass (Panicum virgatum). BioEnergy Res doi. doi: 10.1007/s12155-015-9629-7 Google Scholar
  50. 50.
    Dong H, Thames S, Liu L, Smith MW, Yan L, Wu Y (2015) QTL mapping for reproductive maturity in lowland switchgrass populations. BioEnergy Res 8:1925–1937. doi: 10.1007/s12155-015-9651-9 CrossRefGoogle Scholar
  51. 51.
    Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–41. doi: 10.1117/1.3589100 Google Scholar
  52. 52.
    Pinheiro J, Bates D, DebRoy S, Sarkar D, Core Team R (2015) nlme: linear and nonlinear mixed effects models. Version 3:1–120, Accessed 21 March 2016Google Scholar
  53. 53.
    Kuhn M, Weston S, Wing J, Forester J, Thaler T (2013) Contrast: a collection of contrast methods. Version 0.19. Accessed 21 March 2016
  54. 54.
    Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890CrossRefPubMedGoogle Scholar
  55. 55.
    Margarido GRA, Souza AP, Garcia AAF (2007) OneMap: software for genetic mapping in outcrossing species. Hereditas 144:78–79CrossRefPubMedGoogle Scholar
  56. 56.
    Serba D, Wu L, Daverdin G, Bahri BA, Wang X, Kilian A, Bouton JH, Brummer EC, Saha MC, Devos KM (2013) Linkage maps of lowland and upland tetraploid switchgrass ecotypes. Bioenergy Res 6:953–965. doi: 10.1007/s12155-013-9315-6 CrossRefGoogle Scholar
  57. 57.
    Lowry DB, Hernandez K, Taylor SH, Meyer E, Logan TL, Barry K, Chapman J, Rokhsar DS, Schmutz J, Juenger TE (2015) The genetics of divergence and reproductive isolation between ecotypes of Panicum hallii. New Phytol 205:402–414. doi: 10.1111/nph.13027 CrossRefPubMedGoogle Scholar
  58. 58.
    Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460. doi: 10.1093/jxb/erh277 CrossRefPubMedGoogle Scholar
  59. 59.
    Campitelli BE, Des Marais DL, Juenger TE (2016) Ecological interactions and the fitness effect of water-use efficiency: competition and drought alter the impact of natural MPK12 alleles in Arabidopsis. Ecol Lett 19:424–434. doi: 10.1111/ele.12575 CrossRefPubMedGoogle Scholar
  60. 60.
    Liu Y, Zhang X, Tran H, Shan L, Kim J, Childs K, Ervin EH, Frazier T, Zhao B (2015) Assessment of drought tolerance of 49 switchgrass (Panicum virgatum) genotypes using physiological and morphological parameters. Biotechnol Biofuels 8:1–18. doi: 10.1186/s13068-015-0342-8 CrossRefGoogle Scholar
  61. 61.
    Demmig-Adams B, Adams WW (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21. doi: 10.1111/j.1469-8137.2006.01835.x CrossRefPubMedGoogle Scholar
  62. 62.
    Heckathorn SA, DeLucia EH (1991) Effect of leaf rolling on gas exchange and leaf temperature of Andropogon gerardii and Spartina pectinata. Bot Gaz 152:263. doi: 10.1086/337888 CrossRefGoogle Scholar
  63. 63.
    Redmann RE (1985) Adaptation of grasses to water stress-leaf rolling and stomate distribution. Ann Missouri Bot Gard 72:833–842CrossRefGoogle Scholar
  64. 64.
    O’Toole JC, Cruz RT (1980) Response of leaf water potential, stomatal resistance, and leaf rolling to water stress. Plant Physiol 65:428–432CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Maseda PH, Fernández RJ (2006) Stay wet or else: three ways in which plants can adjust hydraulically to their environment. J Exp Bot 57:3963–3977. doi: 10.1093/jxb/erl127 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2016

Authors and Affiliations

  • Samuel H. Taylor
    • 1
    • 3
  • David B. Lowry
    • 1
    • 4
  • Michael J. Aspinwall
    • 1
    • 5
  • Jason E. Bonnette
    • 1
  • Philip A. Fay
    • 2
  • Thomas E. Juenger
    • 1
  1. 1.Department of Integrative BiologyUniversity of Texas at AustinAustinUSA
  2. 2.USDA-ARS Grassland Soil and Water Research LaboratoryTempleUSA
  3. 3.Current Address: Departments of Environmental Studies and BiologyKeene State CollegeKeeneUSA
  4. 4.Current Address: Department of Plant BiologyMichigan State UniversityEast LansingUSA
  5. 5.Current Address: Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithAustralia

Personalised recommendations