Skip to main content

Advertisement

Log in

Nitrogen Use Efficiency for Sugarcane-Biofuel Production: What Is Next?

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Land area devoted to sugarcane (Saccharum spp.) production in Brazil has increased from 2 million to 10 million ha over the past four decades. Studies have shown that, from an environmental perspective, the transformation of nitrogen (N) fertilizers into N2O gases can offset the advantages gained by replacing fossil fuels with biofuels. Our objectives here were to review recent developments in N management for sugarcane-biofuel production and assess estimates of N use efficiency (NUE) and N losses based on future scenarios, as well as for life-cycle assessments of bioenergy production. Approximately 60 % of N-based fertilizer applied to sugarcane fields in Brazil is recovered by plants and soils, whereas N losses to leaching and N2O emissions can average 5.6 and 1.84 % of the total applied N, respectively. Maintenance of trash, rotation with N-fixing legume species, and optimization of byproducts usage have potential for reducing the N requirements of sugarcane cultivation in Brazil. Moreover, the development of sugarcane genotypes with higher NUEs, along with management systems that consider soil capacity of mineralization, is required for improving the NUE of sugarcane. Strategies to maintain N as NH4 + in sugarcane-cropped soils also have the potential to reduce N losses and enhance NUE. The development of second-generation biofuels is important for increasing biofuel production while simultaneously maintaining N rates and improving NUE, and sugarcane systems in Brazil show potential for sustainable biofuel production with low N rates and limited N2O losses. Reducing N rates in sugarcane fields is thus necessary for improving sugarcane-based biofuel production and reducing its environmental impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pimentel D, Patzek T (2007) Ethanol production: energy and economic issues related to U.S. and Brazilian sugarcane. Nat Resour Res 16:235–242. doi:10.1007/s11053-007-9049-2

    Article  CAS  Google Scholar 

  2. Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810. doi:10.1126/science.1137013

    Article  CAS  PubMed  Google Scholar 

  3. Renouf MA, Wegener MK, Nielsen LK (2008) An environmental life cycle assessment comparing Australian sugarcane with US corn and UK sugar beet as producers of sugars for fermentation. Biomass Bioenergy 32:1144–1155. doi:10.1016/j.biombioe.2008.02.012

    Article  CAS  Google Scholar 

  4. Smeets E, Jungiger M, Faaij A, Walter A, Dolsan P, Turkemburg W (2008) The sustainability of Brazilian ethanol—an assessment of the possibilities of certified production. Biomass Bioenergy 16:192–123. doi:10.1016/j.biombioe.2008.01.005

    Google Scholar 

  5. Nass LL, Pereira PAA, Ellis D (2007) Biofuels in Brazil: an overview. Crop Sci 47:2228–2237. doi:10.2135/cropsci2007.03.0166

    Article  Google Scholar 

  6. Leal MRLV, Galdos MV, Scarpare FV, Seabra JEA, Walter A, Oliveira COF (2013) Sugarcane straw availability, quality, recovery and energy use: a literature review. Biomass Bioenergy 53:11–19. doi:10.1016/j.biombioe.2013.03.007

    Article  Google Scholar 

  7. Erisman JW, Van Grinsven H, Leip A, Mosier A, Bleeker A (2010) Nitrogen and biofuels; an overview of the current state of knowledge. Nutr Cycl Agroecosyst 86:211–223. doi:10.1007/s10705-009-9285-4

    Article  CAS  Google Scholar 

  8. Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agrobiofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8:389–395. doi:10.5194/acp-8-389-2008

    Article  CAS  Google Scholar 

  9. Smeets E, Bouwman L, Stehfest E, Van Vuuren DP, Posthuma A (2009) Contribution of N2O to the green-house gas balance of first-generation biofuels. Glob Chang Biol 15:1–23. doi:10.1111/j.1365-2486.2008.01704.x

    Article  Google Scholar 

  10. Neves MF, Trombin VG, Kalaki RB, Gerbasi T, Rodrigues JM, Canto F, Simprini ES, Rovanhol P, Consoli MH (2014) A dimensão do setor sucroenergético: mapeamento e quantificação da safra 2013/2014. Markstrat, Fundace, FEA-RP/USP, Ribeirão Preto 45p

    Google Scholar 

  11. CGEE (2009) Centro de Gestão e Estudos Estratégicos. Bioetanol combustível: uma oportunidade para o Brasil. http://www.cgee.org.br/publicacoes/bietanol.php. Accessed 2 Feb 2016

  12. Unica (2014) União da agroindústria canavieira. http://www.unica.com.br. Accessed 24 April 2015

  13. OECD (2015) Food and agriculture organization of the United Nations. OECD-FAO agricultural outlook 2015. OECD Publishing, Paris. doi:10.1787/agr_outlook-2015-en Accessed 6 January 2016

    Book  Google Scholar 

  14. Moraes M, Costa C, Guilhoto J, Souza L, Oliveira F (2010) Social externalities of fuels. In: Souza ELL, Macedo IC (eds) Ethanol and bioeletricity: sugarcane in the future of energy matrix. UNICA, Sao Paulo, pp. 44–75

    Google Scholar 

  15. FAOSTAT (2015) Food and agriculture organization of the United Nations. Statistics Division. http://faostat3.fao.org/home/E. Accessed 18 April 2015

  16. CONAB (2015) Companhia nacional de abastecimento. Acompanhamento da safra brasileira. Cana-de-açúcar. Safra 2015–16. Segundo levantamento. Agosto de 2015. Monitoramento Agrícola. http://www.conab.gov.br/OlalaCMS/uploads/arquivos/15_08_13_15_58_44_boletim_cana_portugues_-_2o_lev_-_15-16.pdf. Accessed 9 Sept 2015

  17. Protocolo Agroambiental do Setor Sucroenergético (2014) Relatório consolidado 2007/08–2013/14. http://www.ambiente.sp.gov.br/etanolverde/files/2015/02/Protocolo-Agroambiental-do-Setor-Sucroenerg%C3%A9tico-Relat%C3%B3rio-consolidado-RV.pdf. Accessed 18 July 2015

  18. Cerri CEP, Galdos MV, Carvalho JLN, Feigl B, Cerri CC (2013) Quantifying soil carbon stocks and greenhouse gas fluxes in the sugarcane agrosystem: point of view. Sci Agric 70:361–368. doi:10.1590/S0103-90162013000500011

    Article  CAS  Google Scholar 

  19. Bianchini A, Valadão Junior DD, Rosa RP, Colhado F, Daros RF (2014) Soil chiseling and fertilizer location in sugarcane ratoon cultivation. Eng Agric 34:57–65. doi:10.1590/S0100-69162014000100007

    Google Scholar 

  20. Costa MCG, Vitti GC, Cantarella H (2003) Volatilização de N-NH3 de fontes nitrogenadas em cana-de-açúcar colhida sem despalha a fogo. R Bras Ci Solo 27:631–637. doi:10.1590/S0100-06832003000400007

    CAS  Google Scholar 

  21. Mariano E, Trivelin PCO, Vieira MX, Leite JM, Otto R, Franco HCJ (2012) Ammonia losses estimated by an open collector from urea applied to sugarcane straw. R Bras Ci Solo 36:411–419. doi:10.1590/S0100-06832012000200010

    Article  CAS  Google Scholar 

  22. Dinardo-Miranda LL, Fracasso JL (2013) Sugarcane straw and the populations of pests and nematodes. Sci Agric 70:305–310. doi:10.1590/S0103-90162013000500012

    Article  Google Scholar 

  23. Campos LHF, Carvalho SJP, Christoffoleti PJ, Fortes C, Silva JS (2010) Sistemas de manejo da palhada influenciam acúmulo de biomassa e produtividade da cana-de-açúcar (var. RB855453). Acta Sci-Agron 32:345–350. doi:10.4025/actasciagron.v32i2.3703

    Google Scholar 

  24. Sordi RA, Manechini C (2013) Utilization of trash: a view from the agronomic and industrial perspective. Sci Agric 70:1–2. doi:10.1590/S0103-90162013000500002

    Article  Google Scholar 

  25. Cantarella H, Cerri CEP, Carvalho JLN, Magalhães PSG (2013) How much sugarcane trash should be left on the soil? Sci Agric 70:1–2. doi:10.1590/S0103-90162013000500001

    Article  Google Scholar 

  26. Jansson SL, Persson J (1982) Mineralization and immobilization of soil nitrogen. In: Stevenson FJ (ed) Nitrogen in agricultural soils. American Society of Agronomy, Madison, pp. 229–252

    Google Scholar 

  27. Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602. doi:10.1890/03-8002

    Article  Google Scholar 

  28. Jones DL, John RH, Willet VB, Farrar JF, Hodge A (2005) Dissolved organic nitrogen uptake by plants—an important N uptake pathway? Soil Biol Biochem 37:413–423. doi:10.1016/j.soilbio.2004.08.008

    Article  CAS  Google Scholar 

  29. Kuzyakov Y, Xu X (2013) Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol 198:656–669. doi:10.1111/nph.12235

    Article  CAS  PubMed  Google Scholar 

  30. Vinall K, Schmidt S, Brackin R, Lakshmanan P, Robinson N (2012) Amino acids are a nitrogen source for sugarcane. Funct Plant Biol 39:503–511. doi:10.1071/FP12042

    Article  CAS  Google Scholar 

  31. De Armas R, Valadier MH, Champigny ML, Lamaze T (1992) Influence of ammonium and nitrate on the growth and photosynthesis of sugarcane. J Plant Physiol 140:531–535. doi:10.1016/S0176-1617(11)80783-2

    Article  Google Scholar 

  32. Robinson N, Brackin R, Soper KVF, Gamage JHH, Paungfoo-Lonhienne C, Rennenberg H, Lakshmanan P, Schmidt S (2011) Nitrate paradigm does not hold up for sugarcane. PLoS One 6:e19045. doi:10.1371/journal.pone.0019045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. D’Andréa MS (2014) Técnica da diluição do isótopo 15N para determinação da amonificação e nitrificação brutas de N em solos cultivados com cana-de-açúcar e braquiária. Thesis, University of São Paulo

  34. Chien SH, Prochnow LI, Cantarella H (2009) Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. Adv Agron 102:267–322. doi:10.1016/S0065-2113(09)01008-6

    Article  CAS  Google Scholar 

  35. Trivelin PCO, Victoria RL, Rodrigues JCS (1995) Aproveitamento por soqueira de cana-de-açúcar de final de safra do nitrogênio da aquamônia-15 N e ureia-15 N aplicado ao solo em complemento à vinhaça. Pesq Agrop Brasileira 30:1375–1385

    Google Scholar 

  36. Trivelin PCO, Oliveira MW, Vitti AC, Gava GJC, Bendassolli JA (2002) Nitrogen losses of applied urea in the soil-plant system during two sugarcane cycles. Pesq Agrop Brasileira 37:193–201. doi:10.1590/S0100-204X2002000200011

    Article  Google Scholar 

  37. Gava GJC, Trivelin PCO, Vitti AC, Oliveira MW (2003) Recuperação do nitrogênio (15 N) da ureia e da palhada por soqueira de cana-de-açúcar (Saccharum spp.). R Bras Ci Solo 27:621–630. doi:10.1590/S0100-06832003000400006

    Article  CAS  Google Scholar 

  38. Vitti AC (2003) Adubação nitrogenada da cana-de-açúcar (soqueira) colhida mecanicamente sem a queima prévia: manejo e efeito na produtividade. Thesis, University of São Paulo

  39. Franco HCJ, Trivelin PCO, Faroni CE, Vitti AC, Otto R (2008) Aproveitamento pela cana-de-açúcar da adubação nitrogenada de plantio. R Bras Ci Solo 32:2763–2770. doi:10.1590/S0100-06832008000700021

    Article  CAS  Google Scholar 

  40. Faroni CE (2008) Eficiência agronômica das adubações nitrogenadas de plantio e após o primeiro corte avaliada na primeira soqueira de cana-de-açúcar. Thesis, University of São Paulo

  41. Basanta MV, Dourado Neto D, Reichardt K, Bacchi OOS, Oilveira JCM, Trivelin PCO, Timm LC, Tominaga TT, Correchel V, Cássaro FAM, Pires LF, Macedo JR (2003) Management effects on nitrogen recovery um a sugarcane crop grown in Brazil. Geoderma 116:235–248. doi:10.1016/S0016-7061(03)00103-4

    Article  CAS  Google Scholar 

  42. Gava GJC, Trivelin PCO, Vitti AC, Oliveira MW (2002) Balanço do nitrogênio da ureia (15 N) no sistema solo-cana-de-açúcar (cana-soca). In: Congresso Nacional dos Técnicos Açucareiros e Alcooleiros do Brasil, 8. STAB, Recife p 245–251

  43. Farquhar GD, Firth PM, Wetselaar R, Weir B (1980) On the gaseous exchange of ammonia between leaves and the environment: determination of the ammonia compensation point. Plant Physiol 66:710–714. doi:10.1104/pp.66.4.710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mariano E, Leite JM, Megda MXV, Torres-Dorante L, Trivelin PCO (2015) Influence of nitrogen form supply on soil mineral nitrogen dynamics, nitrogen uptake, and productivity of sugarcane. Agron J 107:641–650. doi:10.2134/agronj14.0422

    Article  CAS  Google Scholar 

  45. Gava GJC, Trivelin PCO, Oliveira MW, Penatti CP (2001) Crescimento e acúmulo de nitrogênio em cana-de-açúcar cultivada em solo coberto com palhada. Pesq Agrop Brasileira 36:347–1354. doi:10.1590/S0100-204X2001001100004

    Article  Google Scholar 

  46. Franco HCJ, Otto R, Faroni CE, Vitti AC, Oliveira ECA, Trivelin PCO (2011) Nitrogen in sugarcane derived from fertilizer under Brazilian field conditions. Field Crop Res 121:29–41. doi:10.1016/j.fcr.2010.11.011

    Article  Google Scholar 

  47. Vieira-Megda MX, Mariano E, Leite JM, Franco HCJ, Vitti AC, Megda MM, Khan SA, Mulvaney RL, Trivelin PCO (2015) Contribution of fertilizer nitrogen to the total nitrogen extracted by sugarcane under Brazilian field conditions. Nutr Cycl Agroecosyst 101:241–257. doi:10.1007/s10705-015-9676-7

    Article  CAS  Google Scholar 

  48. Dourado Neto D, Powlson D, Abu Bakar R, Bacchi OOS, Basanta MV, Thi Cong P, Keerthisinghe S, Ismaili M, Rahman SM, Reichardt K, Safwat MSA, Sangakkara R, Timm LC, Wang JY, Zagal E, Van Kessel C (2010) Multiseason recoveries of organic and inorganic nitrogen-15 in tropical cropping systems. Soil Sci Soc Am J 74:139–152. doi:10.2136/sssaj2009.0192

    Article  CAS  Google Scholar 

  49. Otto R, Mulvaney RL, Khan SA, Trivelin PCO (2013) Quantifying soil nitrogen mineralization to improve fertilizer nitrogen management of sugarcane. Biol Fertil Soils 49:893–904. doi:10.1007/s00374-013-0787-5

    Article  CAS  Google Scholar 

  50. Ogle SM, McCarl BA, Baker J, Del Grosso SJ, Adler PR, Paustian K, Parton WJ (2015) Managing the nitrogen cycle to reduce greenhouse gas emissions from crop production and biofuel expansion. Mitig Adapt Strateg Glob Chang:1–16. doi:10.1007/s11027-015-9645-0

  51. Robinson N, Fletcher A, Whan A, Critchley C, Wirén N, Von Lakshmanan P, et al. (2007) Sugarcane genotypes differ in internal nitrogen use efficiency. Funct Plant Biol 34:1122–1129. doi:10.1071/FP07183

    Article  CAS  Google Scholar 

  52. Whan A, Robinson N, Lakshmanan P, Schmidt S, Aitken K (2010) A quantitative genetics approach to nitrogen use efficiency in sugarcane. Funct Plant Biol 37:448–454. doi:10.1071/FP09260

    Article  Google Scholar 

  53. Robinson N, Fletcher A, Whan A, Vinall K, Brackin R, Lakshmanan P, Schmidt S (2008) Sustainable sugarcane production systems: reducing plant nitrogen demand. Proc Aust Soc Sugar Cane Technol 30:212–219

    Google Scholar 

  54. Arruda P (2012) Genetically modified sugarcane for bioenergy generation. Curr Opin Biotechnol 23:315–322. doi:10.1016/j.copbio.2011.10.012

    Article  CAS  PubMed  Google Scholar 

  55. Skocaj DM, Y E, Schroeder BL (2013) Nitrogen management guidelines for sugarcane production in Australia: can these be modified for wet tropical conditions using seasonal climate forecasting? Springer Sci Rev 1:51–71. doi:10.1007/s40362-013-0004-9

    Article  Google Scholar 

  56. Thorburn PJ, Jakku E, Webster AJ, Everingham YL (2011a) Agricultural decision support systems facilitating co-learning: a case study on environmental impacts of sugarcane production. Int J Agric Sustain 9:1–12. doi:10.1080/14735903.2011.582359

    Google Scholar 

  57. Wood AW, Schroeder BL, Dwyer R (2010) Opportunities for improving the efficiency of use of nitrogen fertiliser in the Australian sugar industry. Proc Aust Soc Sugar Cane Technol 32:221–233

    Google Scholar 

  58. Schroder JL, Zhang H, Girma K, Raun WR, Penn CJ, Payton ME (2011) Soil acidification from long-term use of nitrogen fertilizers on winter wheat. Soil Sci Soc Am J 75:957–964. doi:10.2136/sssaj2010.0187

    Article  CAS  Google Scholar 

  59. Brady NC, Weil RR (2007) The nature and properties of soils, 14th edn. Prentice Hall, Pearson, New York

    Google Scholar 

  60. Crusciol CAC, Foltran R, Rossato OB, Mccray JM, Rossetto R (2014) Effects of surface application of calcium-magnesium silicate and gypsum on soil fertility and sugarcane yield. R Bras Ci Solo 38:1843–1854. doi:10.1590/S0100-06832014000600019

    Article  Google Scholar 

  61. Chen D, Suter H, Islam A, Edis R, Freney JR, Walker CN (2008) Prospects of improving efficiency of fertiliser nitrogen in Australian agriculture: a review of enhanced efficiency fertilisers. Aust J Soil Res 46:289–301. doi:10.1071/SR07197

    Article  CAS  Google Scholar 

  62. Kingston G (2000) Climate and the management of sugarcane. In: Hogarth DM, Allsopp PG (eds) Manual of canegrowing. Bureau of Sugar Experiment Stations, Brisbane, pp. 7–25

    Google Scholar 

  63. Waterhouse J, Brodie J, Lewis S, Mitchell A (2012) Quantifying the sources of pollutants in the great barrier reef catchments and the relative risk to reef ecosystems. Mar Pollut Bull 65:394–406. doi:10.1016/j.marpolbul.2011.09.031

    Article  CAS  PubMed  Google Scholar 

  64. Prado H (2005) Ambientes de produção de cana-de-açúcar na região Centro-Sul do Brasil. Encarte do Informações Agronômicas 110:12–17 https://wwwipninet/ppiweb/brazilnsf/87cb8a98bf72572b8525693e0053ea70/7759ddc6878ca7eb83256d05004c6dd1/$FILE/Enc12-17-110pdf. Acessed 22 Jan 2016

    Google Scholar 

  65. Fontes MPF, Alleoni LRF (2006) Electrochemical attributes and availability of nutrients, toxic elements, and heavy metals in tropical soils. Sci Agric 63:589–608. doi:10.1590/S0103-90162006000600014

    Article  CAS  Google Scholar 

  66. Oliveira MW, Trivelin PCO, Boaretto AE, Muraoka T, Mortatti J (2002) Leaching of nitrogen, potassium, calcium and magnesium in sandy soil cultivated with sugarcane. Pesq Agrop Brasileira 37:861–868. doi:10.1590/S0100-204X2002000600016

    Article  Google Scholar 

  67. Ghiberto PJ, Libardi PL, Brito AS, Trivelin PCO (2009) Leaching of nutrients from a sugarcane crop growing on an Ultisol in Brazil. Agric Water Manag 96:1443–1448. doi:10.1016/j.agwat.2009.04.020

    Article  Google Scholar 

  68. Ghiberto PJ, Libardi PL, Brito AS, Trivelin PCO (2011) Components of the water balance in soil with sugarcane crops. Agric Water Manag 102:1–7. doi:10.1016/j.agwat.2011.09.010

    Article  Google Scholar 

  69. Ghiberto PJ, Libardi PL, Trivelin PCO (2015) Nutrient leaching in an Ultisol cultivated with sugarcane. Agric Water Manag 31:141–149. doi:10.1016/j.agwat.2014.09.027

    Article  Google Scholar 

  70. Portocarrero RA, Acreche MM (2014) Nitrate leaching in an Argiudoll cultivated with sugarcane. Sugar Tech 16:329–332. doi:10.1007/s12355-013-0287-9

    Google Scholar 

  71. Denmead OT, Macdonald BCT, Bryant G, Reilly RJ, Griffith DWT, Stainlay W, White I, Melville MD (2005) Gaseous nitrogen losses from acid sulfate sugarcane soils on the coastal lowlands. Aust Soc Sugar Cane Technol 27:211–219. doi:10.1016/S1002-0160(11)60118-5

    Google Scholar 

  72. Ammann C, Sprig C, Fischer C, Leifeld J, Nefler A (2007) Interactive comment to P. Crutzen et al. Atmos Chem Phys Discuss 7:79–81

    Google Scholar 

  73. Rauh S (2007) Interactive comment to P. Crutzen et al. Atmos Chem Phys Discuss 7:6–9

    Google Scholar 

  74. Creutzig F, Ravindranath NH, Berndes G, Bolwig S, Bright R, Cherubini F, Chum H, Corbera E, Delucchi M, Faaij A, Fargione J, Haberl H, Heath G, Lucon O, Plevin R, Popp A, Robledo-Abad C, Rose S, Smith P, Stromman A, Suh S, Masera O (2015) Bioenergy and climate change mitigation: an assessment. Glob Chang Biol Bioenergy 7:916–944. doi:10.1111/gcbb.12205

    Article  CAS  Google Scholar 

  75. IPCC (2007) Intergovernmental panel on climate change. Climate change: synthesis report. In: Core Writing Team, Pachauri RK, Reisinger A (eds) Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva

    Google Scholar 

  76. Allen DE, Kingston G, Rennenberg H, Dalal RC, Schmidt S (2010) Effect of nitrogen fertilizer management and waterlogging on nitrous oxide emission from subtropical sugarcane soils. Agric Ecosyst Environ 136:209–217. doi:10.1016/j.agee.2009.11.002

    Article  CAS  Google Scholar 

  77. Weier KL, Rolston DE, Thorburn PJ (1998) The potential for N losses via denitrification beneath a green cane trash blanket. Proc Aust Soc Sugar Cane Technol 20:169–175

    Google Scholar 

  78. Denmead OT, Macdonald BCT, Bryant G, Naylor T, Wilson S, Griffith DWT, Wang WJ, Salter B, White I, Moody PW (2010) Emissions of methane and nitrous oxide from Australian sugarcane soils. Agric For Meteorol 150:748–756. doi:10.1016/j.agrformet.2009.06.018

    Article  Google Scholar 

  79. Lisboa CC, Butterbach-Bahl K, Mauder M, Kiese R (2011) Bioethanol production from sugarcane and emissions of greenhouse. Glob Chang Biol Bioenergy 3:277–292. doi:10.1111/j.1757-1707.2011.01095.x

    Article  CAS  Google Scholar 

  80. Soares JR, Cantarella H, Vargas VP, Carmo JB, Martins AA, Souza RM, Andrade CA (2015) Enhanced-efficiency fertilizers in nitrous oxide emissions from urea applied to sugarcane. J Environ Qual 44:423–430. doi:10.2134/jeq2014.02.0096

    Article  CAS  PubMed  Google Scholar 

  81. Carmo JB, Filoso S, Zotelli LC, Souza Neto ERD, Pitombo LM, Duarte Neto PJ, Vargas VP, Andrade CA, Gava GJC, Rossetto R (2013) Infield greenhouse gas emissions from sugarcane soils in Brazil: effects from synthetic and organic fertilizer application and crop trash accumulation. Glob Chang Biol Bioenergy 5:267–280. doi:10.1111/j.1757-1707.2012.01199.x

    Article  CAS  Google Scholar 

  82. Signor D, Cerri CEP, Conant R (2013) N2O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil. Environ Res Lett 8:1–9. doi:10.1088/1748-9326/8/1/015013

    Article  CAS  Google Scholar 

  83. Borjesson P (2009) Good or bad bioethanol from a greenhouse gas perspective—what determines this? Appl Energy 86:589–594. doi:10.1016/j.apenergy.2008.11.025

    Article  CAS  Google Scholar 

  84. Vargas VP, Cantarella H, Martins AA, Soares JR, Do Carmo JB, De Andrade CA (2014) Sugarcane crop residue increases N2O and CO2 emissions under high soil moisture conditions. Sugar Tech 16:174–179. doi:10.1007/s12355-013-0271-4

    Article  CAS  Google Scholar 

  85. Cantarella H, Trivelin PCO, Contin TLM, Dias FLF, Rossetto R, Marcelino R, Coimbra RB, Quaggio JA (2008) Ammonia volatilisation from urease inhibitor-treated urea applied to sugarcane trash blankets. Sci Agric 65:397–401. doi:10.1590/S0103-90162008000400011

    Article  CAS  Google Scholar 

  86. Soares JR, Cantarella H, Menegale MLD (2012) Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors. Soil Biol Biochem 52:82–89. doi:10.1016/j.soilbio.2012.04.019

    Article  CAS  Google Scholar 

  87. Faria LA, Nascimento CAC, Ventura BP, Florim GP, Luz PHC, Vitti GC (2014) Hygroscopicity and ammonia volatilization losses from nitrogen sources in coated urea. R Bras Ci Solo 38:942–948. doi:10.1590/S0100-06832014000300026

    Article  CAS  Google Scholar 

  88. Thorburn P, Meier EA, Collins K, Roberton FA (2012) Changes in soil carbon sequestration, fractionation and soil fertility in response to sugarcane residue retention are site-specific. Soil Tillage Res 120:99–111. doi:10.1016/j.still.2011.11.009

    Article  Google Scholar 

  89. Fortes C, Trivelin PCO, Vitti AC (2012) Long term decomposition of sugarcane harvest residues in Sao Paulo state Brazil. Biomass Bioenergy 42:189–198. doi:10.1016/j.biombioe.2012.03.011

    Article  CAS  Google Scholar 

  90. Oliveira MW, Trivelin PCO, Kingston G, Barbosa MHP, Vitti AC (2002) Decomposition and release of nutrients from sugarcane trash in two agricultural environments in Brazil. In: Conference of the Australian Society of Sugar Cane Technologists. Carns, Proceedings 24:1–10

  91. Meier EA, Thorburn PJ, Wegener MK, Basford KE (2006) The availability of nitrogen from sugarcane trash on contrasting soils in the wet tropics of North Queensland. Nutr Cycl Agroecosyst 75:101–114. doi:10.1007/s10705-006-9015-0

    Article  CAS  Google Scholar 

  92. Hemwong S, Toomsan B, Cadisch G, Limpinuntana V, Vityakon P, Patanothai A (2009) Sugarcane residue management and grain legume crop effects on N dynamics, N losses and growth of sugarcane. Nutr Cycl Agroecosyst 83:135–151. doi:10.1007/s10705-008-9209-8

    Article  Google Scholar 

  93. Robertson FA, Thorburn PJ (2007) Management of sugarcane harvest residues: consequences for soil carbon and nitrogen. Aust J Soil Res 45:13–23. doi:10.1071/SR06080

    Article  CAS  Google Scholar 

  94. Trivelin PCO, Franco HCJ, Otto R, Ferreira DA, Vitti AC, Fortes C, Faroni CE, Oliveira ECA, Cantarella H (2013) Impact of sugarcane trash on fertilizer requirements for São Paulo, Brazil. Sci Agric 70:345–352. doi:10.1590/S0103-90162013000500009

    Article  CAS  Google Scholar 

  95. Prado RM, Pancelli M (2008) Resposta de soqueiras de cana-de-açúcar em sistema de colheita sem queima à aplicação de nitrogênio. Bragantia 67:951–959. doi:10.1590/S0006-87052008000400018

    Article  CAS  Google Scholar 

  96. Wood AW (1991) Management of crop following green harvesting of sugarcane in North Queensland. Soil Tillage Res 20:69–85. doi:10.1016/0167-1987(91)90126-I

    Article  Google Scholar 

  97. Landel MGA, Scarpari MS, Xavier MA, Anjos IA, Baptista AS, Aguiar CL, Silva DN, Bidoia MAP, Brancalião SR, Bressiani JÁ, Campos MF, Miguel PEM, Silva TN, Silva VHP, Souza Anjos LO, Ogata BH (2013) Residual biomass potential of commercial and pre-commercial sugarcane cultivars. Sci Agric 70:299–304. doi:10.1590/S0103-90162013000500003

    Article  Google Scholar 

  98. Oliveira MW, Trivelin PCO, Gava GJC, Penatti CP (1999) Sugarcane trash degradation. Sci Agric 56:803–809. doi:10.1590/S0103-90161999000400006

    Article  Google Scholar 

  99. Magalhães PSG, Nogueira LAH, Cantarella H, Rossetto R, Franco HCJ, Braunbeck OA (2012) Agro-industrial technological paths in sustainability of sugarcane bioenergy by center of strategic studies and management. CGEE, Brasília, Brasil

    Google Scholar 

  100. Caceres NT, Alcarde JC (1995) Adubação verde com leguminosas em rotação com cana-de-açúcar (Saccharum ssp). STAB – Açúcar Álcool e Subprodutos 13:16–20

    Google Scholar 

  101. Garside AL, Berthelsen JE, Richards CL, Toovey LM (1996) Fallow legumes on the wet tropical coast: some species and management options. P Aust Soc Sugar Cane Technol 18:202–208

    Google Scholar 

  102. Shoko MD, Pieterse PJ, Zhou M (2009) Effect of soybean (Glycine max) as a breakcrop on the cane and sugar yield of sugarcane. Sugar Tech 11:252–257

    Article  CAS  Google Scholar 

  103. Ambrosano EJ, Trivelin PCO, Cantarella H, Ambrosano GMB, Schammas EA, Muraoka T, Rossi F (2011b) 15 N-labeled nitrogen from green manure and ammonium sulfate utilization by the sugarcane ratoon. Sci Agric 68:361–368. doi:10.1590/S0103-90162011000300014

    Article  CAS  Google Scholar 

  104. Cheruiyot EK, Mumera LM, Nakhone LN, Mwonga SM (2003) Effect of legume-managed fallow on weeds and soil nitrogen in following maize (Zea mays L.) and wheat (Triticum aestivum L.) crops in the Rift Valley highlands of Kenya. Aust J Exp Agric 43:597–604. doi:10.1071/EA02033

    Article  Google Scholar 

  105. Dinardo-Miranda LL, Fracasso JV (2009) Spatial distribution of plant-parasitic nematodes in sugarcane fields. Sci Agric 66:188–194. doi:10.1590/S0103-90162009000200007

    Article  Google Scholar 

  106. Ambrosano EJ, Cantarella H, Ambrosano GMB, Schammas EA, Dias FLF, Rossi F, Trivelin PCO, Muraoka T, Sachs RCC, Azcon R (2011a) Produtividade da cana-de-açúcar após o cultivo de leguminosas. Bragantia 70:810–818. doi:10.1590/S0006-87052011000400012

    Article  Google Scholar 

  107. Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18. doi:10.1007/s11104-008-9668-3

    Article  CAS  Google Scholar 

  108. Silva GTA, Matos LV, Nobrega PD, Campello EFC, Resende AS (2008) Chemical composition and decomposition rate of plants used as green manure. Sci Agric 65:298–305. doi:10.1590/S0103-90162008000300010

    Google Scholar 

  109. Garside AL, Berthelsen JE, Richards CL (1997) Effect of fallow history on cane and sugar yield of a following plant cane crop. P Aust Soc Sugar Cane Technol 19:80–86

    Google Scholar 

  110. Park SE, Webster TJ, Horan HL, James AT, Thorburn PJ (2010) A legume rotation crop lessens the need for nitrogen fertiliser throughout the sugarcane cropping cycle. Field Crop Res 119:331–341. doi:10.1016/j.fcr.2010.08.001

    Article  Google Scholar 

  111. Cantarella H, Trivelin PCO, Vitti AC (2007) Nitrogênio e enxofre na cultura da cana de açúcar. In: Yamada T, Abdalla SRS, Vitti GC (eds) Nitrogênio e enxofre na agricultura Brasileira. International Plant Nutrition Institute, Piracicaba, pp. 355–412

    Google Scholar 

  112. Franco HCJ, Trivelin PCO, Faroni CE, Vitti AC, Otto R (2010) Stalk yield and technological attributes of planted cane as related to nitrogen fertilization. Sci Agric 67:579–590. doi:10.1590/S0103-90162010000500012

    Article  Google Scholar 

  113. Fortes C, Trivelin PCO, Vitti AC, Otto R, Franco HCJ, Faroni CE (2013a) Stalk and sucrose yield in response to nitrogen fertilization of sugarcane under reduced tillage. Pesq Agropec Bras 48:88–96. doi:10.1590/S0100-204X2013000100012

    Article  Google Scholar 

  114. Salcedo IH, Sampaio EVSB, Alves GD (1985) Mineralização do carbono e do nitrogênio em solo cultivado com cana-de-açúcar. R Bras Ci Solo 9:33–38

    CAS  Google Scholar 

  115. Thorburn PJ, Dart IK, Biggs IJ, Baillie CP, Smith MA, Keating BA (2003) The fate of nitrogen applied to sugarcane by trickle irrigation. Irrig Sci 22:201–209. doi:10.1007/s00271-003-0086-2

    Article  Google Scholar 

  116. Boddey RM, Urquiaga S, Alves BJR, Reis VM (2003) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252:139–149. doi:10.1023/A:1024152126541

    Article  CAS  Google Scholar 

  117. Urquiaga S, Xavier RP, Morais RF, Batista RB, Schultz N, Leite JM, Sá JM, Barbosa KP, Resende AS, Alves BJR, Boddey RM (2012) Evidence from field nitrogen balance and 15N natural abundance data of the contribution of biological N2 fixation to Brazilian sugarcane varieties. Plant Soil 356:5–21. doi:10.1007/s11104-011-1016-3

    Article  CAS  Google Scholar 

  118. Oliveira ALM, Canuto EL, Urquiaga S, Reis VM, Baldani JI (2006) Yield of micropropagated sugarcane varieties in different soil types following inoculation with endophytic diazotrophic bacteria. Plant Soil 284:23–32. doi:10.1007/s11104-006-0025-0

    Article  CAS  Google Scholar 

  119. Schultz N, Morais RF, Silva JA, Baptista RB, Oliveira RP, Leite JM, Pereira W, Carneiro Junior JB, Alves BJR, Baldani JI, Boddey RM, Urquiaga S, Reis VM (2012) Avaliação agronômica de variedades de cana-de-açúcar inoculadas com bactérias diazotróficas e adubadas com nitrogênio. Pesq Agrop Brasileira 47:261–268. doi:10.1590/S0100-204X2012000200015

    Article  Google Scholar 

  120. Schultz N, Silva JA, Sousa JS, Monteiro RC, Oliveira RP, Chaves VA, Pereira WS, Marinete F, Baldani JI, Boddey RM, Reis VM, Urquiaga S (2014) Inoculation of sugarcane with diazotrophic bacteria. R Bras Ci Solo 38:407–414. doi:10.1590/S0100-06832014000200005

    Article  Google Scholar 

  121. Cantarella H, Montezano ZF, Joris HAW, Vitti AC, Rossetto R, Gava GJC, Dias FLF, Urquiaga S, Reis VM (2014) Nitrogen fertilization and inoculation of sugarcane with diazotrophic bacteria: 13-site-year of field results. Proceedings of the 2nd Brazilian BioEnergy Science and Technology Conference, Campos do Jordão

  122. Biggs IM, Stewart GR, Wilson JR, Critchley C (2002) 15 N natural abundance studies in Australian commercial sugarcane. Plant Soil 238:21–30. doi:10.1023/A:1014280420779

    Article  CAS  Google Scholar 

  123. Hoefsloot G, Termorshuizen AJ, Watt DA, Cramer MD (2005) Biological nitrogen fixation is not a major contributor to the nitrogen demand of a commercially grown South African sugarcane cultivar. Plant Soil 277:85–96. doi:10.1007/s11104-005-2581-0

    Article  CAS  Google Scholar 

  124. Lin L, Li Z, Hu C, Zhang X, Chang S, Yang L, Li Y, An Q (2012) Plant growth-promoting nitrogen-fixing enterobacteria are in association with sugarcane plants growing in Guangxi, China. Microbes Environ 27:391–398. doi:10.1264/jsme2.ME11275

    Article  PubMed  PubMed Central  Google Scholar 

  125. Santi C, Bogusz D, Franchie C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111:743–767. doi:10.1093/aob/mct048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rossetto R, Dias FLF, Landell MGA, Cantarella H, Tavares S, Vitti AC, Perecin D (2010) N and K fertilization of sugarcane ratoons harvested without burning. Proc Int Soc Sugar Cane Tech 27:1–8

    Google Scholar 

  127. Thorburn PJ, Biggs JS, Webster AJ, Biggs IM (2011b) An improved way to determine nitrogen fertiliser requirements of sugarcane crops to meet global environmental challenges. Plant Soil 339:51–67. doi:10.1007/s11104-010-0406-2

    Article  CAS  Google Scholar 

  128. Spironello A, Raij B, Penatti CP, Cantarella H, Morelli JLM, Orlando Filho J, Landell MGA, Rossetto R (1997) Sugarcane crop. In: van Raij B, Cantarella H, Quaggio JA, Furlani AMC (eds) Recomendations of fertilizer and lime to São Paulo state, 2nd edn. Instituto Agronômico, Campinas

    Google Scholar 

  129. Galdos MV, Cerri CC, Lal R, Bernoux M, Feigl B, Cerri CEP (2010) Net greenhouse gas fluxes in Brazilian ethanol production systems. Glob Chang Biol Bioenergy 2:37–44. doi:10.1111/j.1757-1707.2010.01037.x

    Article  CAS  Google Scholar 

  130. Vitti AC, Franco HCJ, Trivelin PCO, Ferreira DA, Otto R, Fortes C, Faroni CE (2011) Nitrogênio proveniente da adubação nitrogenada e de resíduos culturais na nutrição da cana-planta. Pesq Agrop Brasileira 46:287–293. doi:10.1590/S0100-204X2011000300009

    Article  Google Scholar 

  131. Fortes C, Vitti AC, Otto R, Ferreira DA, Franco HCJ, Trivelin PCO (2013b) Contribution of nitrogen from sugarcane harvest residues and urea for crop nutrition. Sci Agric 70:313–320. doi:10.1590/S0103-90162013000500005

    Article  CAS  Google Scholar 

  132. Ferreira DA, Franco HCJ, Otto R, Vitti AC, Fortes C, Faroni CE, Garside AL, Trivelin PCO (2015) Contribution of N from green harvest residues for sugarcane nutrition in Brazil. Glob Chang Biol Bioenergy. doi:10.1111/gcbb.12292

    Google Scholar 

  133. Schroeder BL, Wood AW, Sefton M, Hurney AP, Skocaj DM, Stainlay T, Moody PW (2010) District yield potential: an appropriate basis for nitrogen guidelines for sugarcane production. Proc Aust Soc Sugar Cane Technol 32:193–209

    Google Scholar 

  134. Mariano E (2015) Predição da necessidade de fertilizante nitrogenado pela cana-de-açúcar e reações do nitrogênio orgânico e mineral dissolvidos em palha e solo de canaviais. University of São Paulo, Thesis

    Book  Google Scholar 

  135. Vale DW, Prado RM, Pancelli MA (2009) Análise econômica da adubação nitrogenada em soqueiras de cana-de-açúcar. STAB- Açúcar Álcool e Subprodutos 28:32–34

    Google Scholar 

  136. Fortes C (2010) Produtividade de cana-de-açúcar em função da adubação nitrogenada e da decomposição da palhada em ciclos consecutivos. Thesis, University of São Paulo

  137. Vieira MX, Trivelin PCO, Franco HCJ, Otto R, Faroni CE (2010) Ammonium chloride as nitrogen source in sugarcane harvested without burning. R Bras Ci Solo 34:1165–1174. doi:10.1590/S0100-06832010000400016

    Article  CAS  Google Scholar 

  138. Castro SGQ (2012) Sistemas de manejo em colheita e cultivo associados à adubação nitrogenada da cana-de-açúcar: aspectos qualiquantitativos da produção. Thesis, University of São Paulo State

  139. Penatti CP, Araújo JV, Forti JA, Ribeiro R (2001) Doses de vinhaça e nitrogênio aplicadas em cana-soca durante quatro safras em solo LV—Usina São José da Estiva. STAB-Açúcar Álcool e Subprodutos 19:38–41

    Google Scholar 

  140. Castro SGQ, Barbosa JC, Castro SAQ, Mutton MA (2012) Aplicação diferenciada de nitrogênio em soqueira de cana-de-açúcar. In: Reunião Brasileira de Fertilidade do Solo e Nutrição de Plantas, 30, Maceió, Anais... Maceió, SBCS, UFAL, CD-ROM

  141. Orlando Filho J, Rodella AA, Beltrame JÁ, Lavorenti NA (1999) Doses, fontes e formas de aplicação de nitrogênio em cana-de-açúcar. STAB Açúcar Álcool e Subprodutos 17:39–41

    Google Scholar 

  142. Anda (2015) Associação nacional para difusão de adubos. Anuário estatístico do setor de fertilizantes, 2013. http://anda.org.br/multimidia/capa_e_indice_do_ae_20130001.pdf. Accessed 24 April 2015

  143. Moir JL, Cameron KC, Di HJ (2007) Effects of the nitrification inhibitor dicyandiamide on soil mineral N, pasture yield, nutrient uptake and pasture quality on a grazed pasture system. Soil Use Manag 23:111–120. doi:10.1111/j.1475-2743.2006.00078.x

    Article  Google Scholar 

  144. Zaman M, Saggar S, Blennerhassett JD, Singh J (2009) Effect of urease and nitrification inhibitors on N transformation, gaseous emissions of ammonia and nitrous oxide, pasture yield and N uptake in grazed pasture system. Soil Biol Biochem 41:1270–1280. doi:10.1016/j.soilbio.2009.03.011

    Article  CAS  Google Scholar 

  145. Vieira-Megda MX, Trivelin PCO, Franco HCJ, Otto R, Vitti AC (2012) Eficiência agronômica de adubos nitrogenados em soqueira de cana-de-açúcar colhida sem queima. Pesq Agrop Brasileira 47:1681–1690. doi:10.1590/S0100-204X2012001200002

    Article  Google Scholar 

  146. Shoji S, Delgado JA, Mosier A, Miura Y (2001) Use of controlled release fertilizers and nitrification inhibitors to increase nitrogen use efficiency and to conserve air and water quality. Commun Soil Sci Plant Anal 32:1051–1070. doi:10.1081/CSS-100104103

    Article  CAS  Google Scholar 

  147. Penatti CP (2014) Adubação da cana-de-açúcar: 30 anos de experiência. Ottoni, Itu

    Google Scholar 

  148. Liu XJ, Mosier AR, Halvorson AD, Zhang FS (2005) Tillage and nitrogen application effects on nitrous and nitric oxide emissions from irrigated corn fields. Plant Soil 276:235–249. doi:10.1007/s11104-005-4894-4

    Article  CAS  Google Scholar 

  149. Van Kessel C, Venterea R, Six J, Adviento-Borbe MA, Linquist B, Groenigen KJV (2013) Climate, duration, and N placement determine N2O emissions in reduced tillage systems: a meta-analysis. Glob Chang Biol 19:33–44. doi:10.1111/j.1365-2486.2012.02779.x

    Article  PubMed  Google Scholar 

  150. Chapuis-Lardy L, Wrage N, Metay A, Chotte J-L, Bernoux M (2007) Soils a sink for N2O? A review. Glob Chang Biol 13:1–17. doi:10.1111/j.1365-2486.2006.01280.x

    Article  Google Scholar 

  151. Vitti AC, Trivelin PCO, Gava GJC, Franco HCJ, Bologna IR, Faroni CE (2007) Produtividade da cana-de-açúcar relacionada à localização de adubos nitrogenados aplicados sobre os resíduos culturais em canavial sem queima. R Bras Ci Solo 31:491–498. doi:10.1590/S0100-06832007000300009

    Article  CAS  Google Scholar 

  152. Amaducci MT, Barbanti L, Venturi G (2006) Comparing application methods for N-fertilizer in the sugar beet crop. Ital J Agron 1:51–61. doi:10.4081/ija.2006.51

    Article  Google Scholar 

  153. Beres BL, Harker KN, Clayton GW, Bremer E, O’Donovan JT, Blackshaw RE, Smith AM (2010) Influence of N fertilization method on weed growth, grain yield and grain protein concentration in no-till winter wheat. Can J Plant Sci 90:637–644. doi:10.4141/CJPS10037

    Article  Google Scholar 

  154. Blair N (2000) Impact of cultivation and sugarcane green trash management on carbon fractions and aggregate stability for a chromic Luvisol in Queensland. Soil Tillage Res 55:183–191. doi:10.1016/S0167-1987(00)00113-6

    Article  Google Scholar 

  155. Manechini C (2000) Cultivo mecânico da soqueira de cana colhida sem queimar (condensado da experiência acumulada). Relatório Interno Coopersucar - Projeto Cana crua, Piracicaba

    Google Scholar 

  156. Castro SGQ, Franco HJC, Mutton MA (2014) Harvest managements and cultural practices in sugarcane. R Bras Ci Solo 38:299–306. doi:10.1590/S0100-06832014000100030

    Article  Google Scholar 

  157. Smith DM, Inman-Bamber NG, Thorburn PJ (2005) Growth and function of the sugarcane root system. Field Crop Res 92:169–183. doi:10.1016/j.fcr.2005.01.017

    Article  Google Scholar 

  158. Otto R, Silva AP, Franco HCJ, Oliveira ECA, Trivelin PCO (2011) High soil penetration resistance reduces sugarcane root system development. Soil Tillage Res 117:201–210. doi:10.1016/j.still.2011.10.005

    Article  Google Scholar 

  159. Demattê JLI (2005) Cultura da cana-de-açúcar: recuperação e manutenção da fertilidade dos solos. Encarte Técnico Informações Agronômicas 111. http://www.ipni.net/publication/ia-brasil.nsf/0/80EF811848745EAF83257AA1006B29C1/$FILE/Encarte%20111.pdf. Accessed 12 Dec 2015

  160. Oliveira ECA (2011) Balanço nutricional da cana-de-açúcar relacionado à adubação nitrogenada. Thesis, University of São Paulo

  161. Uribe RAM, Gava GJC, Saad JCC, Kolln OT (2013) Ratoon sugarcane yield integrated drip-irrigation and nitrogen fertilization. Eng Agric 33:1124–1133. doi:10.1590/S0100-69162013000600005

    Google Scholar 

  162. Kolln OT, Gava GJC, Cantarella H, Franco HCJ, Uribe RAM, Pannuti LER, Trivelin PCO (2015) Fertigated sugarcane yield and carbon isotope discrimination (Δ13C) related to nitrogen nutrition. Sug Tech 1–10. doi: 10.1007/s12355-015-0384-z

  163. Molin JP, Frasson FR, Amaral LR, Povh FP, Salvi JV (2010) Capacidade de um sensor ótico em quantificar a resposta da cana-de-açúcar a doses de nitrogênio. R Bras Eng Agric Amb 14:1345–1349. doi:10.1590/S1415-43662010001200014

    Article  Google Scholar 

  164. Teal RK, Tubana B, Girma K, Freeman KW, Arnall DB, Walsh O, Raun RW (2006) In-season prediction of corn grain yield potential using normalized difference vegetation index. Agron J 98:1488–1494. doi:10.2134/agronj2006.0103

    Article  Google Scholar 

  165. Eitel JUH, Long DS, Gessler PE, Hunt ER (2008) Combined spectral index to improve ground-based estimates of nitrogen status in dryland wheat. Agron J 100(6):1694–1702. doi:10.2134/agronj2007.0362

    Article  CAS  Google Scholar 

  166. Wu C, Niu Z, Tang Q, Huang W (2008) Estimating chlorophyll content from hyperspectral vegetation indices: modeling and validation. Agric For Meteorol 148:1230–1241. doi:10.1016/j.agrformet.2008.03.005

    Article  Google Scholar 

  167. Blackmer TM, Schepers JS, Varvel GE, Walter-Shea EA (1996) Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies. Agron J 88:1–5. doi:10.2134/agronj1996.00021962008800010001x

    Article  CAS  Google Scholar 

  168. Amaral LR, Molin JP, Portz G, Finazzi FB, Cortinove L (2015) Comparison of crop canopy reflectance sensors used to identify sugarcane biomass and nitrogen status. Precis Agric 16:15–28. doi:10.1007/s11119-014-9377-2

    Article  Google Scholar 

  169. Amaral LR, Molin JP, Schepers JS (2015) Algorithm for variable-rate nitrogen application in sugarcane based on active crop canopy sensor. Agron J 107:1513–1523. doi:10.2134/agronj14.0494

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was partially funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP process no. 2014/05591-0). We thank the anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Otto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otto, R., Castro, S.A.Q., Mariano, E. et al. Nitrogen Use Efficiency for Sugarcane-Biofuel Production: What Is Next?. Bioenerg. Res. 9, 1272–1289 (2016). https://doi.org/10.1007/s12155-016-9763-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-016-9763-x

Keywords

Navigation