Advertisement

BioEnergy Research

, Volume 9, Issue 4, pp 1167–1179 | Cite as

Cellulosic Butanol (ABE) Biofuel Production from Sweet Sorghum Bagasse (SSB): Impact of Hot Water Pretreatment and Solid Loadings on Fermentation Employing Clostridium beijerinckii P260

  • N. QureshiEmail author
  • S. Liu
  • S. Hughes
  • D. Palmquist
  • B. Dien
  • B. Saha
Article

Abstract

A novel butanol fermentation process was developed in which sweet sorghum bagasse (SSB) was pretreated using liquid hot water (LHW) pretreatment technique followed by enzymatic hydrolysis and butanol (acetone butanol ethanol (ABE)) fermentation. A pretreatment temperature of 200 °C resulted in the generation of a hydrolyzate that inhibited butanol fermentation. When SSB pretreatment temperature was decreased to 190 °C (0-min holding time), the hydrolyzate was successfully fermented without inhibition and an ABE productivity of 0.51 g L−1 h−1 was achieved which is comparable to the 0.49 g L−1 h−1 observed in the control fermentation where glucose was used as a feedstock. These results are based on the use of 86 g L−1 SSB solid loadings in the pretreatment reactors. We were also able to increase SSB solid loadings from 120 to 200 g L−1 in the pretreatment step (190 °C) followed by hydrolysis and butanol fermentation. As pretreatment solid loadings increased, ABE yield remained in the range of 0.38–0.46. In these studies, a maximum ABE concentration of 16.88 g L−1 was achieved. Using the LHW pretreatment technique, 88.40–96.00 % of polymeric sugars (cellulose + hemicellulose) were released in the SSB hydrolyzate. The LHW pretreatment technique does not require chemical additions and is environmentally friendly, and the hydrolyzate can be used successfully for butanol fermentation.

Keywords

Sweet sorghum bagasse (SSB) Liquid hot water (LWH) pretreatment Butanol fermentation Inhibitors ABE productivity ABE yield 

Notes

Acknowledgments

N. Qureshi would like to thank Professor David Jones (Otago University, Dunedin, New Zealand) for his generous gift of Clostridium beijerinckii P260. NQ would also like to thank Gregory Kennedy (US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA) for analyzing SSB hydrolyzate samples for sugar estimation.

Compliance with Ethical Standards

Ethical Standards

This work does not involve use of human subjects or animals.

Conflict of Interests

The authors do not have any conflict of interests.

References

  1. 1.
    Anon (2006) “BP, DuPont to develop biofuels”, article in “Feedstuffs” June 26 issue: p. 20Google Scholar
  2. 2.
    Anon (2006) “DuPont and BP will produce butanol for motor fuel”, article in “Industrial Bioprocessing”, July issue: 28(7)Google Scholar
  3. 3.
    Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484–524PubMedPubMedCentralGoogle Scholar
  4. 4.
    Qureshi N, Maddox IS (1992) Application of novel technology to the ABE fermentation process: an economic analysis. Appl Biochem Biotechnol 34:441–448CrossRefGoogle Scholar
  5. 5.
    Maddox IS, Qureshi N, Gutierrez NA (1993) Utilization of whey and process technology by clostridia. In: Woods DR (ed) The clostridia and biotechnology. Butterworth Heinemann, Boston, pp. 343–369Google Scholar
  6. 6.
    Ennis BM, Maddox IS (1987) The effect of pH and lactose concentration on solvent production from whey permeate using Clostridium acetobutylicum. Biotechnol Bioeng 29:329–334CrossRefPubMedGoogle Scholar
  7. 7.
    Venkataramanan KP, Scholz C (2014) Integrated production of butanol from glycerol. In: Qureshi N, Hodge DB, Vertes AA (eds) Biorefineries: integrated biochemical processes for liquid biofuels. Elsevier, Amsterdam, pp. 225–233CrossRefGoogle Scholar
  8. 8.
    Jesse T, Ezeji TC, Qureshi N, Blaschek HP (2002) Production of butanol from starch-based waste packing peanuts and agricultural waste. J Ind Microbiol Biotechnol 29:117–123CrossRefPubMedGoogle Scholar
  9. 9.
    Qureshi N, Lolas A, Blaschek HP (2001) Soy molasses as fermentation substrate for production of butanol using Clostridium beijerinckii BA101. J Ind Microbiol Biotechnol 26:290–295CrossRefPubMedGoogle Scholar
  10. 10.
    Huang H, Singh V, Qureshi N (2015) Butanol production from food waste: a novel process for producing sustainable energy and reducing environmental pollution. Biotechnol Biofuels 8:147,1–12Google Scholar
  11. 11.
    Claassen PA, Budde MA, Lopez-Contreras AM (2000) Acetone, butanol and ethanol production from domestic organic waste by solventogenic clostridia. J Mol Microbiol Biotechnol 2:39–44PubMedGoogle Scholar
  12. 12.
    Comwien J, Boonvithaya N, Chulaliksananukul W, Glinwong C (2015) Direct production of butanol and ethanol from cane sugar factory wastewater and cellulosic ethanol plant wastewater by Clostridium beijerinckii CG1. Energy Procedia 79:556–561CrossRefGoogle Scholar
  13. 13.
    Qureshi N, Liu S, Ezeji TC (2013) Cellulosic butanol production from agricultural biomass residues: recent advances in technology. In: Lee JW (ed) Advanced biofuels and Bioproducts. Springer Science + Business Media, LLC, pp. 247–265CrossRefGoogle Scholar
  14. 14.
    Qureshi N, Saha BC, Dien B, Hector R, Cotta MA (2010) Production of butanol (a biofuel) from agricultural residues: I—use of barley straw hydrolysate. Biomass Bioenergy 34:559–565CrossRefGoogle Scholar
  15. 15.
    Qureshi N, Saha BC, Cotta MA, Singh V (2013) An economic evaluation of biological conversion of wheat straw to ethanol. Energy Convers Manag 65:456–462CrossRefGoogle Scholar
  16. 16.
    Sipos B, Reczey J, Somorai Z, Kadar Z, Diemes D, Reczey K (2009) Sweet sorghum as feedstock for ethanol production: enzymatic hydrolysis of steam-pretreated bagasse. Appl Biochem Biotechnol 153:151–162CrossRefPubMedGoogle Scholar
  17. 17.
    Gnansounou E, Dauriat A, Wayman CE (2005) Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China. Bioresour Technol 96:985–1002CrossRefPubMedGoogle Scholar
  18. 18.
    Liu X, Lu M, Ai N, Yu F, Ji J (2012) Kinetic model analysis of dilute sulfuric acid-catalyzed hemicellulose hydrolysis in sweet sorghum bagasse for xylose production. Ind Crop Prod 38:81–86CrossRefGoogle Scholar
  19. 19.
    Qureshi N, Manderson GJ (1995) Bioconversion of renewable resources into ethanol: an economic evaluation of selected hydrolysis, fermentation, and membrane technologies. Energy Sources 17:241–265CrossRefGoogle Scholar
  20. 20.
    Singh V, Johnston DB, Rausch KD, Tumbleson ME (2010) Improvement in corn to ethanol production technology using Saccharomyces cerevisiae. In: Vertes A, Qureshi N, Blaschek HP, Yukawa H (eds) Biomass to biofuels: strategies for global industries. John Wiley & Sons, Chichester, pp. 187–198Google Scholar
  21. 21.
    Qureshi N, Singh V (2014) Process economics of renewable biorefineries: butanol and ethanol production in integrated bioprocesses from lignocellulosics and other industrial by-products. In: Qureshi N, Hodge DB, Vertes AA (eds) Biorefineries: integrated biochemical processes for liquid biofuels. Elsevier, Amsterdam, pp. 237–254CrossRefGoogle Scholar
  22. 22.
    Marlatt JA, Datta R (1986) Acetone-butanol fermentation process development and economic evaluation. Biotechnol Prog 2:23–28CrossRefPubMedGoogle Scholar
  23. 23.
    Corn News & Future Prices (2016) Current news on corn crops, corn prices & futures and production. Website: http://www.agweb.com/crops/corn/. Accessed 5 Jan)
  24. 24.
    Saha BC, Nichols NN, Cotta MA (2011) Ethanol production from wheat straw by recombinant Escherichia coli strain FBR5 at high solid loading. Bioresour Technol 102:10892–10897CrossRefPubMedGoogle Scholar
  25. 25.
    Marchal R, Ropars M, Vandecasteele JP (1984) Direct conversion of alkali-pretreated straw using simultaneous enzymatic hydrolysis and acetone-butanol fermentation. Biotechnol Lett 6:523–528CrossRefGoogle Scholar
  26. 26.
    Saha BC, Cotta MA (2006) Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw. Biotechnol Prog 22:449–453CrossRefPubMedGoogle Scholar
  27. 27.
    Ezeji T, Blaschek HP (2008) Fermentation of dried distillers’ grains and soluble (DDGS) hydrolysate to solvents and value-added products by solventogenic clostridia. Bioresour Technol 99:5232–5242CrossRefPubMedGoogle Scholar
  28. 28.
    Li B-Z, Balan V, Yuan Y-J, Dale BE (2010) Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber (AFEX) pretreatment. Bioresour Technol 101:1285–1292CrossRefPubMedGoogle Scholar
  29. 29.
    Dien BS, O’Bryan PJ, Hector RE, Iten LB, Mitchell RB, Qureshi N, Sarath G, Vogel KP, Cotta MA (2013) Conversion of switchgrass to ethanol using dilute ammonium hydroxide pretreatment: influence of ecotype and harvest maturity. Environ Technol 34:1837–1848CrossRefPubMedGoogle Scholar
  30. 30.
    Shah MM, Lee YY (1992) Simultaneous saccharification and extractive fermentation for acetone/butanol production from pretreated hardwood. Appl Biochem Biotechnol 34(35):557–568CrossRefGoogle Scholar
  31. 31.
    Qureshi N, Saha BC, Hector RE, Dien B, Hughes SR, Liu S, Iten L, Bowman MJ, Sarath G, Cotta MA (2010) Production of butanol (a biofuel) from agricultural residues: II-use of corn Stover and switchgrass hydrolysates. Biomass Bioenergy 34:566–571CrossRefGoogle Scholar
  32. 32.
    Qureshi N, Blaschek HP (1999) Butanol recovery from model solution/fermentation broth by pervaporation: evaluation of membrane performance. Biomass Bioenergy 17:175–184CrossRefGoogle Scholar
  33. 33.
    Avci A, Saha BC, Kennedy GJ, Cotta MA (2013) Dilute sulfuric acid pretreatment of corn Stover for enzymatic hydrolysis and efficient ethanol production by recombinant Escherichia coli FBR5 without detoxification. Bioresour Technol 142:312–319CrossRefPubMedGoogle Scholar
  34. 34.
    Saha BC, Qureshi N, Kennedy GJ, Cotta MA (2015) Enhancement of xylose utilization from corn Stover by a recombinant Escherichia coli strain for ethanol production. Bioresour Technol 190:182–188CrossRefPubMedGoogle Scholar
  35. 35.
    Ezeji TC, Qureshi N, Blaschek HP (2007) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97:1460–1469CrossRefPubMedGoogle Scholar
  36. 36.
    Qureshi N, Maddox IS (1991) Integration of continuous production and recovery of solvents from whey permeate: use of immobilized cells of Clostridium acetobutylicum in fluidized bed bioreactor coupled with gas stripping. Bioprocess Eng 6:63–69CrossRefGoogle Scholar
  37. 37.
    Ezeji TC, Qureshi N, Blaschek HP (2013) Microbial production of a biofuel (acetone-butanol-ethanol) in a continuous bioreactor: impact of bleed and simultaneous product removal. Bioprocess Biosyst Eng 36:109–116CrossRefPubMedGoogle Scholar
  38. 38.
    Afschar AS, Biebl H, Schaller K, Schugerl K (1985) Production of acetone and butanol by Clostridium acetobutylicum in continuous culture with cell recycle. Appl Microbiol Biotechnol 22:394–398CrossRefGoogle Scholar
  39. 39.
    Cheryan M (1986) Ultrafiltration handbook. Technomic Press Lancaster, PAGoogle Scholar
  40. 40.
    Qureshi N (2009) Solvent (acetone-butanol, AB) production. In: Schaechter M (ed) Encyclopedia of microbiology. Elsevier Ltd., Oxford, pp. 512–528CrossRefGoogle Scholar
  41. 41.
    Huang W-C, Ramey DE, Yang S-T (2004) Continuous production of butanol by Clostridium acetobutylicum immobilized in a fibrous bed bioreactor. Appl Biochem Biotechnol 113-116:887–898CrossRefPubMedGoogle Scholar
  42. 42.
    Dogaris I, Gkounta O, Mamma D (2012) Bioconversion of dilute-acid pretreatment sorghum bagasse to ethanol by Neurospora crassa. Appl Microbiol Biotechnol 95:541–550CrossRefPubMedGoogle Scholar
  43. 43.
    Zhang J, Ma X, Yu J, Zhang X, Tan T (2011) The effects of four different pretreatments on enzymatic hydrolysis of sweet sorghum bagasse. Bioresour Technol 102:4585–4589CrossRefPubMedGoogle Scholar
  44. 44.
    Shen F, Zhong Y, Saddler JN, Liu R (2011) Relatively high-substrate consistency hydrolysis of steam-pretreated sweet sorghum bagasse at relatively low cellulose loading. Appl Biochem Biotechnol 165:1024–1036CrossRefPubMedGoogle Scholar
  45. 45.
    Wu L, Arakane M, Ike M, Wada M, Takai T, Gua M, Tokuyasu K (2011) Low temperature alkali pretreatment for improving enzymatic digestibility of sweet sorghum bagaasse for ethanol production. Bioresour Technol 102:4793–4799CrossRefPubMedGoogle Scholar
  46. 46.
    Li J, Li S, Han B, Yu M, Li G, Jiang Y (2013) A novel cost-effective technology to convert sucrose and homocelluloses in sweet sorghum stalks into ethanol. Biotechnol Biofuels 6:174CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Yu J, Zhang T, Zhong J, Zhang X, Tan T (2012) Biorefinery of sweet sorghum stem. Biotechnol Adv 30:811–816CrossRefPubMedGoogle Scholar
  48. 48.
    Matsakas L, Christakopoulos P (2013) Fermentation of liquefacted hydrothermally pretreated sweet sorghum bagasse to ethanol at high-solids content. Bioresour Technol 127:202–208CrossRefPubMedGoogle Scholar
  49. 49.
    Shen F, Saddler JN, Liu R, Lin L, Deng S, Zhang Y, Yang G, Xiao H, Li Y (2011) Evaluation of steam pretreatment on sweet sorghum bagasse for enzymatic hydrolysis and bioethanol production. Carbohydr Polym 86:1542–1548CrossRefGoogle Scholar
  50. 50.
    Cai D, Zhang T, Zheng J, Chang Z, Wang Z, Qin P, Tan T-W (2013) Biobutanol from sweet sorghum bagasse hydrolysate by a hybrid pervaporation process. Bioresour Technol 145:97–102CrossRefPubMedGoogle Scholar
  51. 51.
    Parekh SR, Parekh RS, Wayman M (1988) Ethanol and butanol production by fermentation of enzymatically saccharified SO2-prehydrolyzed lignocellulosics. Enzym Microb Technol 10:660–668CrossRefGoogle Scholar
  52. 52.
    Soni BK, Das K, Ghose TK (1982) Bioconversion of agro-wastes into acetone butanol. Biotechnol Lett 4:19–22CrossRefGoogle Scholar
  53. 53.
    Qureshi N, Ebener J, Ezeji TC, Dien B, Cotta MA, Blaschek HP (2008) Butanol production by Clostridium Beijerinckii BA101 part I: use of acid and enzyme hydrolysed corn fiber. Bioresour Technol 99:5915–5922CrossRefPubMedGoogle Scholar
  54. 54.
    Qureshi N, Saha BC, Cotta MA (2007) Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosyst Eng 30:419–427CrossRefPubMedGoogle Scholar
  55. 55.
    Qureshi N, Singh V, Liu S, Ezeji TC, Saha BC, Cotta MA (2014) Process integration for simultaneous saccharification, fermentation, and recovery (SSFR): production of butanol from corn Stover using Clostridium beijerinckii P260. Bioresour Technol 154:222–228CrossRefPubMedGoogle Scholar
  56. 56.
    Maddox IS (1989) The acetone-butanol-ethanol fermentation: recent progress in technology. Biotechnol Genet Eng Rev 7:189–220CrossRefPubMedGoogle Scholar
  57. 57.
    Dürre P (1998) New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl Microbiol Biotechnol 49:639–648CrossRefGoogle Scholar
  58. 58.
    Zverlov VV, Berezina O, Velikodvorskaya GA, Schwart WH (2006) Bacterial acetone and butanol production by industrial fermentation in the soviet union: use of hydrolyzed agricultural waste for biorefinery. Appl Microbiol Biotechnol 71:587–597CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2016

Authors and Affiliations

  • N. Qureshi
    • 1
    Email author
  • S. Liu
    • 2
  • S. Hughes
    • 2
  • D. Palmquist
    • 3
  • B. Dien
    • 1
  • B. Saha
    • 1
  1. 1.United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioenergy Research UnitPeoriaUSA
  2. 2.USDA, ARS, NCAUR, Renewable Product Technology Research UnitPeoriaUSA
  3. 3.USDA, ARS, Midwest AreaPeoriaUSA

Personalised recommendations