Advertisement

BioEnergy Research

, Volume 9, Issue 4, pp 985–997 | Cite as

Characterization of Blue Agave Bagasse (BAB) as Raw Material for Bioethanol Production Processes by Gravimetric, Thermal, Chromatographic, X-ray Diffraction, Microscopy, and Laser Light Scattering Techniques

  • Oscar Hernández-MeléndezEmail author
  • Floriberto Miguel-Cruz
  • Carmina Montiel
  • Martín Hernández-Luna
  • Eduardo Vivaldo-LimaEmail author
  • Carlos Mena-Brito
  • Eduardo Bárzana
Article

Abstract

A detailed characterization of the main types of blue agave bagasse (BAB) obtained from the four largest tequila factories in the State of Jalisco (Mexico) is presented here. After milling/sieving the agave bagasses, two particle size fractions were identified, one rich in fibers and the other consisting of dust/fine particles. Both fractions were analyzed to determine the content of cellulose, hemicellulose, lignin, organic-soluble compounds, absorbed remaining sugars, minerals, and organic matter. After detailed analyses of both fractions by wet, thermal (thermo-gravimetric analysis (TGA)/differential thermo-gravimetric analysis (DTA)), and other methods (high-performance liquid chromatography (HPLC), microscopy, particle size by laser diffraction light scattering, and crystallinity by X-ray diffraction), a moderate-to-intensive method was devised for further processing the fibrous fraction, which had a high crystalline cellulose content, as well as for its subsequent enzymatic saccharification under well-defined moderate conditions. Alternative processing options were also devised for the dust/fine particle fraction, which has a moderate crystalline cellulose that is rich in adsorbed sugars and that has a high mineral matter content.

Keywords

Lignocellulosic residues Blue agave bagasse Alkaline extrusion Sugar production 

Notes

Acknowledgments

The authors wish to acknowledge financial support from the (a) European Community, Seventh Framework Program (FP7), Project BABETHANOL (New feedstock and innovative transformation process for a more sustainable development and production of lignocellulosic ethanol), grant agreement no. 227498-2, and (b) DGAPA-UNAM, PAPIIT Project IG100815. This study is also part of the research projects carried out through the Bioenergy Thematic Network (“Red Temática de Bioenergía”) with partial support from the National Council for Science and Technology (CONACYT) of Mexico, grant no. 260457. The authors also thank Dr. Alberto López-Luna and Mrs. Lidia Itzincab-Mejía, Dr. Alberto Rosas-Aburto, Mr. Ivan Puente Lee, Mrs. Cecilia Salcedo, and Mrs. Margarita Portilla, for their help with HPLC/GPC, particle size distribution, SEM, XRD, and TGA/DTA analyses, respectively.

References

  1. 1.
    Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792CrossRefPubMedGoogle Scholar
  2. 2.
    Cedeño-Cruz M (1995) Tequila production. Crit Rev Biotechnol 15:1–11CrossRefGoogle Scholar
  3. 3.
    Cedeño-Cruz M, Alvarez-Jacobs J (1999) Production of tequila from agave: historical influences and contemporary processes. In: Jacques KA, Lyons TP, Kelsall DR (eds) The alcohol textbook: a reference for the beverage, fuel and industrial alcohol industries. Nottingham University Press, Alltech Inc, Nottingham, UK, pp 225–241Google Scholar
  4. 4.
    Avila-Fernández A, Rendón-Poujol X, Olvera C, González F, Capella S, Peña-Alvarez A, López-Munguía A (2009) Enzymatic hydrolysis of fructans in the tequila production process. J Agric Food Chem 57:5578–5585CrossRefPubMedGoogle Scholar
  5. 5.
    Consejo Regulador del Tequila, CRT. URL: https://www.crt.org.mx/EstadisticasCRTweb/. Accessed 08 Jan 2016
  6. 6.
    Iñiguez G, Acosta N, Martinez L, Parra J, González O (2005) Tequila industry by-products utilization. Part 7. Agave bagasse and vinases composting. Rev Int Contam Ambie 21:37–50Google Scholar
  7. 7.
    Baca MT, Esteban E, Almendros G, Sanchez-Raya AJ (1993) Changes in the gas phase of compost during solid-state fermentation of sugarcane bagasse. Bioresour Technol 44:5–8CrossRefGoogle Scholar
  8. 8.
    Friedrich E, Trois C (2011) Quantification of greenhouse gas emissions from waste management processes for municipalities—a comparative review focusing on Africa. Waste Manag 31:1585–1596CrossRefPubMedGoogle Scholar
  9. 9.
    Méndez-Acosta HO, Snell-Castro R, Alcaraz-González V, González-Alvarez V, Pelayo-Ortiz C (2010) Anaerobic treatment of tequila vinasses in a CSTR-type digester. Biodegradation 21:357–363CrossRefPubMedGoogle Scholar
  10. 10.
    Herrera Orendain E, Rodriguez VM (2006) Process for the treatment of stillage generated by distillation in the tequila industry. United States Patent, US20070051612 A1Google Scholar
  11. 11.
    Misale GP, Deeshpande AP, Murkumbi V, Agarwal A (2011) Evaporation system. World Intellectual Property Organization, WO2011135589 A2Google Scholar
  12. 12.
    Vandenbossche V, Brault J, Vilarem G, Hernández-Meléndez O, Vivaldo-Lima E, Hernández-Luna M, Barzana E, Duque A, Manzanares P, Ballesteros M, Mata J, Castellón E, Rigal L (2014) A new lignocellulosic biomass deconstruction process combining thermo-mechano chemical action and bio-catalytic enzymatic hydrolysis in a twin-screw extruder. Ind Crops Prod 55:258–266CrossRefGoogle Scholar
  13. 13.
    Laureano-Perez L, Teymouri F, Alizadeh H, Dale B (2005) Understanding factors that limit enzymatic hydrolysis of biomass. Appl Biochem Biotechnol 121-124:1081–1099CrossRefPubMedGoogle Scholar
  14. 14.
    Thiebaud S (1995) Valorisation chimique des composes lignocellulosiques: obtention de nouveaux matériaux. PhD Thesis, Institut National Polytechnique de ToulouseGoogle Scholar
  15. 15.
    Van Soest PJ, Wine RH (1963) Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. J Assoc Off Ana Chem 46:829–835Google Scholar
  16. 16.
    Van Soest PJ, Wine RH (1967) Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents. J Assoc Off Ana Chem 50:50–55Google Scholar
  17. 17.
    Van Soest PJ, Wine RH (1968) Determination of lignin and cellulose in acid-detergent fiber with permanganate. J Assoc Off Ana Chem 46:829–835Google Scholar
  18. 18.
    Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRefGoogle Scholar
  19. 19.
    Teramoto Y, Lee SH, Endo T (2009) Cost reduction and feedstock diversity for sulfuric acid-free ethanol cooking of lignocellulosic biomass as a pretreatment to enzymatic saccharification. Bioresour Technol 100:4783–4789CrossRefPubMedGoogle Scholar
  20. 20.
    Lamsal B, Yoo J, Brijwani K, Alavi S (2010) Extrusion as a thermo-mechanical pre-treatment for lignocellulosic ethanol. Biomass Bioenergy 34:1703–1710CrossRefGoogle Scholar
  21. 21.
    Kestur S, Flores-Sahagun THS, Pereira Dos Santos L, Dos Santos J, Mazzaro I, Mikowski A (2013) Characterization of blue agave bagasse fibers of Mexico. Compos Part A 45:153–161CrossRefGoogle Scholar
  22. 22.
    Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861CrossRefPubMedGoogle Scholar
  23. 23.
    Lee D, Owens VN, Boe A, Jeranyama P (2007) Composition of herbaceous biomass feedstocks. June 2007. URL http://ncsungrant.sdstate.org/uploads/publications/SGINC1-07.pdf. Accessed 22 Dec 2015
  24. 24.
    Alonso MS (2005) Valorisation de la bagasse de l’agave tequilana W. cv azul: caractérisation, étude de la digestibilité et de la fermentation des sucres. PhD Thesis, Institut National Polytechnique de ToulouseGoogle Scholar
  25. 25.
    Iñiguez-Covarrubias G, Lange SE, Rowell RM (2001) Utilization of byproducts from the tequila industry: part 1: agave bagasse as a raw material for animal feeding and fiberboard production. Bioresour Technol 77:25–32CrossRefPubMedGoogle Scholar
  26. 26.
    Ramírez CR, Alonso MS, Rigal L (2012) Agroindustrial residuals alkaline treatment of the tequila production, for its use as a rumiants’ food complement. URL: http://132.248.9.34/hevila/RevistaAIDISdeingenieriaycienciasambientales/2012/vol5/no2/7.pdf. Accessed 22 Dec 2015
  27. 27.
    Saucedo-Luna J, Castro-Montoya AJ, Martinez-Pacheco MM, Sosa-Aguirre CR, Campos-Garcia J (2011) Efficient chemical and enzymatic saccharification of the lignocellulosic residue from Agave tequilana bagasse to produce ethanol by Pichia caribbica. J Ind Microbiol Biotechnol 38(6):725–732. doi: 10.1007/s10295-010-0853-z CrossRefPubMedGoogle Scholar
  28. 28.
    Caspeta L, Caro-Bermúdez MA, Ponce-Noyola T, Martinez A (2014) Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol. Appl Energ 113:277–286CrossRefGoogle Scholar
  29. 29.
    Lee SH, Taremoto Y, Endo T (2010) Enhancement of enzymatic accessibility by fibrillation of woody biomass using batch-type kneader with twin-screw elements. Bioresour Technol 101:769–774CrossRefPubMedGoogle Scholar
  30. 30.
    Li H, Foston MB, Kumar R, Samuel R, Gao W, Hu F, Ragauskas AJ, Wyman CE (2012) Chemical composition and characterization of cellulose for agave as a fast-growing, drought-tolerant biofuels feedstock. RSC Adv 2:4951–4958CrossRefGoogle Scholar
  31. 31.
    Li H, Pattathil S, Foston MB, Ding SY, Kumar R, Gao AM, Yarbrough JM, Himmel ME, Ragauskas AJ, Hahn MG, Wyman CE (2014) Agave proves to be a low recalcitrant lignocellulosic feedstock for biofuels production on semi-arid lands. Biotechnol Biofuels 7:50CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ouyang JM, Duan L, Tieke B (2003) Effects of carboxylic acids on the crystal growth of calcium oxalate nanoparticles in lecithin-water liposome systems. Langmuir 19:8980–8985CrossRefGoogle Scholar
  33. 33.
    Perez-Pimienta JA, Lopez-Ortega MG, Varanasi P, Stavila V, Cheng G, Singh S, Simmons BA (2013) Comparison of the impact of ionic liquid pretreatment on recalcitrance of agave bagasse and switchgrass. Bioresour Technol 127:18–24CrossRefPubMedGoogle Scholar
  34. 34.
    Naono H, Hakuman M (1993) Analysis of porous texture by means of water vapor adsorption isotherm with particular attention to lower limit of hysteresis loop. J Colloid Interface Sci 158:19–26CrossRefGoogle Scholar
  35. 35.
    Carrier M, Loppinet-Serani A, Denux D, Lasnier JM, Ham-Pichavant F, Cansell F, Aymonier C (2011) Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy 35:298–307CrossRefGoogle Scholar
  36. 36.
    Cozzani V, Lucchesi A, Stoppato G, Maschio G (1997) A new method to determine the composition of biomass by thermogravimetric analysis: chemical engineering research in pulp and paper. Can J Chem Eng 75:127–133CrossRefGoogle Scholar
  37. 37.
    Montiel C, Hernández-Meléndez O, Vivaldo-Lima E, Hernández-Luna M, Bárzana E (2016) Enhanced bioethanol production from blue agave bagasse in a combined extrusion-saccharification process. Bio Energy Res. doi: 10.1007/s12155-016-9747-x Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Oscar Hernández-Meléndez
    • 1
    Email author
  • Floriberto Miguel-Cruz
    • 2
  • Carmina Montiel
    • 3
  • Martín Hernández-Luna
    • 1
  • Eduardo Vivaldo-Lima
    • 1
    Email author
  • Carlos Mena-Brito
    • 4
  • Eduardo Bárzana
    • 3
  1. 1.Facultad de Química, Departamento de Ingeniería QuímicaUniversidad Nacional Autónoma de MéxicoMexicoMexico
  2. 2.Consejo Regulador del TequilaZapopanMexico
  3. 3.Facultad de Química, Departamento de AlimentosUniversidad Nacional Autónoma de MéxicoMexicoMexico
  4. 4.Centro Mario Molina Para Estudios Estratégicos Sobre Energía y Medio AmbienteMexicoMexico

Personalised recommendations