Skip to main content
Log in

Maximum Annual Potential Yields of Salix miyabeana SX67 in Southern Quebec and Effects of Coppicing and Stool Age

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Aboveground biomass yields of short rotation cultures (SRC) of willow can vary substantially depending on site quality. Among others, aboveground biomass yields depend on climatic conditions, soil properties, age of the SRC, and number of harvesting cycles. In this study, we investigated the effects of coppicing on growth variables (i.e., largest basal stem, height, and aboveground biomass) at ten SRC of Salix miyabeana SX67 established on various soils in southern Quebec. More than 1100 shrubs with stool ages varying between 1 and 15 years were measured. Strain analysis was carried out to calculate past annual aboveground productivities, and maximum annual yield potential was quantified at each site. Annual growth rates were highly variable and depended on site and coppicing history. To achieve optimal stool development and aboveground yields, two to three growing seasons following coppicing were necessary for sandy and clayey sites, respectively. The delays for reaching maximum yields were shortened when soil cation exchange capacity was dramatically low and were prolonged when soil was physically restricting stool development. This lag influenced the total yield of the first rotation and also modulated the magnitude of the increase of aboveground biomass that is generally observed in the second rotation. To increase yields in southern Quebec, our results suggest that it is preferable to extend the length of the first rotation instead of coppicing at the end of the first growing season after establishment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Volk TA, Verwijst T, Tharakan PJ, Abrahamson LP, White EH (2004) Growing fuel: a sustainability assessment of willow biomass crops. Front Ecol Environ 2(8):411–418. doi:10.1890/1540-9295(2004)002[0411:GFASAO]2.0.CO;2

    Article  Google Scholar 

  2. Karp A, Shield I (2008) Bioenergy from plants and the sustainable yield challenge. New Phytol 179(1):15–32

    Article  PubMed  Google Scholar 

  3. Guidi Nissim W, Pitre FE, Teodorescu TI, Labrecque M (2013) Long-term biomass productivity of willow bioenergy plantations maintained in southern Quebec, Canada. Biomass Bioenergy 56(0):361–369. doi:10.1016/j.biombioe.2013.05.020

    Article  Google Scholar 

  4. Weih M, Nordh NE (2002) Characterising willows for biomass and phytoremediation: growth, nitrogen and water use of 14 willow clones under different irrigation and fertilisation regimes. Biomass Bioenergy 23(6):397–413. doi:10.1016/S0961-9534(02)00067-3

    Article  Google Scholar 

  5. Labrecque M, Teodorescu TI, Daigle S (1998) Early performance and nutrition of two willow species in short-rotation intensive culture fertilized with wastewater sludge and impact on the soil characteristics. Can J For Res 28:1621–1635

    Article  Google Scholar 

  6. Cavanagh A, Gasser MO, Labrecque M (2011) Pig slurry as fertilizer on willow plantation. Biomass Bioenergy 35(10):4165–4173, doi:10.1016/j.biombioe.2011.06.037

  7. Dimitriou I, Eriksson J, Adler A, Aronsson P, Verwijst T (2006) Fate of heavy metals after application of sewage sludge and wood–ash mixtures to short-rotation willow coppice. Environ Pollut 142(1):160–169. doi:10.1016/j.envpol.2005.09.001

    Article  CAS  PubMed  Google Scholar 

  8. Christersson L (1986) High technology biomass production by Salix clones on a sandy soil in southern Sweden. Tree Physiol 2 (1-2-3):261–272. doi:10.1093/treephys/2.1-2-3.261

  9. Labrecque M, Teodorescu IT (2003) High biomass yield achieved by Salix clones in SRIC following two 3-year coppice rotations on abandoned farmland in southern Quebec, Canada. Biomass Bioenergy 25:135–146

    Article  Google Scholar 

  10. Verwijst T (1996) Cyclic and progressive changes in short-rotation willow coppice systems. Biomass Bioenergy 11(2–3):161–165. doi:10.1016/0961-9534(96)00016-5

    Article  Google Scholar 

  11. Bergkvist P, Ledin S (1998) Stem biomass yields at different planting designs and spacings in willow coppice systems. Biomass Bioenergy 14(2):149–156. doi:10.1016/S0961-9534(97)10021-6

    Article  CAS  Google Scholar 

  12. Stolarski M, Szczukowski S, Tworkowski J, Klasa A (2008) Productivity of seven clones of willow coppice in annual and quadrennial cutting cycles. Biomass Bioenergy 32(12):1227–1234. doi:10.1016/j.biombioe.2008.02.023

    Article  Google Scholar 

  13. Labrecque M, Teodorescu TI (2005) Field performance and biomass production of 12 willow and poplar clones in short-rotation coppice in southern Quebec (Canada). Biomass Bioenergy 29(1):1–9. doi:10.1016/j.biombioe.2004.12.004

    Article  Google Scholar 

  14. Toillon J, Rollin B, Dallé E, Feinard-Duranceau MI, Bastien JC, Brignolas F, Marron N (2013) Variability and plasticity of productivity, water-use efficiency, and nitrogen exportation rate in Salix short rotation coppice. Biomass Bioenergy 56(0):392–404. doi:10.1016/j.biombioe.2013.05.017

    Article  CAS  Google Scholar 

  15. Tahvanainen L, Rytkönen VM (1999) Biomass production of Salix viminalis in southern Finland and the effect of soil properties and climate conditions on its production and survival. Biomass Bioenergy 16(2):103–117. doi:10.1016/S0961-9534(98)00074-9

    Article  Google Scholar 

  16. Trapp S, Zambrano KC, Kusk KO, Karlson U (2000) A phytotoxicity test using transpiration of willows. Arch Environ Contam Toxicol 39(2):154–160. doi:10.1007/s002440010091

    Article  CAS  PubMed  Google Scholar 

  17. Heinsoo K, Merilo E, Petrovits M, Koppel A (2009) Fine root biomass and production in a Salix viminalis and Salix dasyclados plantation. Est J Ecol 58(1):27–37

    Article  Google Scholar 

  18. Ens J, Farrell RE, Bélanger N (2013) Effects of edaphic conditions on site quality for Salix purpurea ‘Hotel’ plantations across a large climatic gradient in Canada. New For 1–20. doi:10.1007/s11056-013-9384-6

  19. Moukoumi J, Farrell R, Van Rees K, Hynes RK, Bélanger N (2012) Intercropping Caragana arborescens with Salix miyabeana to satisfy nitrogen demand and maximize growth. Bioenerg Res 5(3):719–732. doi:10.1007/s12155-012-9181-7

    Article  Google Scholar 

  20. Sannervik AN, Eckersten H, Verwijst T, Kowalik P, Nordh NE (2006) Simulation of willow productivity based on radiation use efficiency, shoot mortality and shoot age. Eur J Agron 24(2):156–164. doi:10.1016/j.eja.2005.07.007

    Article  Google Scholar 

  21. Price PW, Clancy KM (1986) Multiple effects of precipitation on Salix lasiolepis and populations of the stem-galling sawfly, Euura lasiolepis. Ecol Res 1(1):1–14. doi:10.1007/BF02361200

    Article  Google Scholar 

  22. Guidi W, Labrecque M (2010) Effects of high water supply on growth, water use, and nutrient allocation in willow and poplar grown in a 1-year pot trial. Water Air Soil Pollut 207(1–4):85–101. doi:10.1007/s11270-009-0121-x

    Article  CAS  Google Scholar 

  23. Mola-Yudego B, Aronsson P (2008) Yield models for commercial willow biomass plantations in Sweden. Biomass Bioenergy 32(9):829–837. doi:10.1016/j.biombioe.2008.01.002

    Article  Google Scholar 

  24. Volk T, Abrahamson L, Cameron K, Castellano P, Corbin T, Fabio E, Johnson G, Kuzovkina-Eischen Y, Labrecque M, Miller R (2011) Yields of willow biomass crops across a range of sites in North America. Asp Appl Biol 112:67–74

    Google Scholar 

  25. Berhongaray G, Verlinden MS, Broeckx LS, Ceulemans R (2015) Changes in belowground biomass after coppice in two Populus genotypes. For Ecol Manag 337(0):1–10. doi:10.1016/j.foreco.2014.10.035

    Article  Google Scholar 

  26. Guidi W, Pitre FE, Labrecque M (2013) Chapter 17 Short-rotation coppice of willows for the production of biomass in eastern Canada. In: Miodrag Darko M (ed) Biomass Now - Sustainable Growth and Use, pp 421–448. ISBN 978-953-51-1105-4

  27. Crow P, Houston TJ (2004) The influence of soil and coppice cycle on the rooting habit of short rotation poplar and willow coppice. Biomass Bioenergy 26(6):497–505. doi:10.1016/j.biombioe.2003.09.002

    Article  Google Scholar 

  28. Abrahamson LP, Volk TA, Kopp RF, White EH, Ballard JL (2002) Willow biomass producer’s handbook. SUNY-ESF, New-york

    Google Scholar 

  29. Labrecque M, Teodorescu TI (2001) Influence of plantation site and wastewater sludge fertilization on the performance and foliar nutrient status of two willow species grown under SRIC in southern Quebec (Canada). For Ecol Manag 150(3):223–239. doi:10.1016/S0378-1127(00)00567-3

    Article  Google Scholar 

  30. Brown JK (1976) Estimating shrub biomass from basal stem diameters. Can J For Res 6(2):153–158. doi:10.1139/x76-019

    Article  Google Scholar 

  31. Telenius B, Verwijst T (1995) The influence of allometric variation, vertical biomass distribution and sampling procedure on biomass estimates in commercial short-rotation forests. Bioresour Technol 51(2–3):247–253. doi:10.1016/0960-8524(94)00133-L

    Article  Google Scholar 

  32. Carmean WH (1975) Adv Agron. In: Brady NC (ed) Forest site quality evaluation in the United States. Academic, USA, pp 209–269. doi:10.1016/S0065-2113(08)70011-7, l Volume 27

    Google Scholar 

  33. Perron J-Y, Fortin M, Ung C-H, Morin P, Blais L, Carpentier J-P, Cloutier J, Del Degan B, Demers D, Gagnon R, Le´tourneau J-P, Richard Y (2009) Ouvrage collectif Ordre des ingénieurs forestiers du Québec, Manuel de foresterie. In: Dendrometrie et inventaire forestier, 2nd edn. Éditions MultiMondes, Québec, pp 567–630

    Google Scholar 

  34. Rabenhorst MC (1988) Determination of organic and carbonate carbon in calcareous soils using dry combustion. Soil Sci Soc Am J 52(4):965–968. doi:10.2136/sssaj1988.03615995005200040012x

    Article  CAS  Google Scholar 

  35. Hendershort WH, Lalande H, Duquette M (2007) Chapter 18 Ion exchange and exchangeable. In: Carter MR, Gregorich EG (eds) Soil sampling and methods of analysis, 2nd edn. CRC Press, Boca Raton, pp 197–206

    Google Scholar 

  36. Rubino DL, McMarthy BC (2000) Dendroclimatological analysis of white oak (Quercus alba L. Fagaceae) from an old-growth forest of southeastern Ohio, USA. J Torrey Bot Soc 127:240–250

  37. Johnson SE, and Abrams, M.D. (2009) Basal area increment trends across age classes for two long-lived tree species in the eastern U.S. Tree Rings in Archaeology, Climatology and Ecology, Vol 7 GFZ Potsdam, Scientific Technical Report STR 09/03, Potsdam, pp 226

  38. von Fircks Y, Ericsson T, Sennerby-Forsse L (2001) Seasonal variation of macronutrients in leaves, stems and roots of Salix dasyclados Wimm. grown at two nutrient levels. Biomass Bioenergy 21(5):321–334. doi:10.1016/S0961-9534(01)00045-9

    Article  Google Scholar 

  39. Kopp RF, Abrahamson LP, White EH, Volk TA, Nowak CA, Fillhart RC (2001) Willow biomass production during ten successive annual harvests. Biomass Bioenergy 20(1):1–7. doi:10.1016/S0961-9534(00)00063-5

    Article  CAS  Google Scholar 

  40. Legendre P (2007) anova.1way.R. http://adn.biol.umontreal.ca/∼numericalecology/Rcode/

  41. Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87(10):2614–2625. doi:10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2

    Article  PubMed  Google Scholar 

  42. Arevalo CBM, Volk TA, Bevilacqua E, Abrahamson L (2007) Development and validation of aboveground biomass estimations for four Salix clones in central New York. Biomass Bioenergy 31(1):1–12. doi:10.1016/j.biombioe.2006.06.012

    Article  Google Scholar 

  43. Nordh NE, Verwijst T (2004) Above-ground biomass assessments and first cutting cycle production in willow (Salix sp.) coppice—a comparison between destructive and non-destructive methods. Biomass Bioenergy 27(1):1–8. doi:10.1016/j.biombioe.2003.10.007

    Article  Google Scholar 

  44. Heinsoo K, Sild E, Koppel A (2002) Estimation of shoot biomass productivity in Estonian Salix plantations. For Ecol Manag 170(1–3):67–74. doi:10.1016/S0378-1127(01)00784-8

    Article  Google Scholar 

  45. Hangs RD, Van Rees KCJ, Schoenau JJ, Guo X (2011) A simple technique for estimating above-ground biomass in short-rotation willow plantations. Biomass Bioenergy 35(5):2156–2162. doi:10.1016/j.biombioe.2011.02.008

    Article  Google Scholar 

  46. Ens JA, Farrell RE, Bélanger N (2009) Rapid biomass estimation using optical stem density of willow (Salix spp.) grown in short rotation. Biomass Bioenergy 33(2):174–179. doi:10.1016/j.biombioe.2008.05.012

    Article  Google Scholar 

  47. Amichev BY, Hangs RD, Van Rees KCJ (2011) A novel approach to simulate growth of multi-stem willow in bioenergy production systems with a simple process-based model (3PG). Biomass Bioenergy 35(1):473–488. doi:10.1016/j.biombioe.2010.09.007

    Article  Google Scholar 

  48. Pedersen BS (1998) The role of stress in the mortality of midwestern oaks as indicated by growth prior to death. Ecology 79(1):79–93. doi:10.1890/0012-9658(1998)079[0079:TROSIT]2.0.CO;2

    Article  Google Scholar 

  49. Verwijst T, Nordh N-E (1992) Non-destructive estimation of biomass of Salix dasyclados. Bioresour Technol 41(1):59–63. doi:10.1016/0960-8524(92)90099-J

    Article  Google Scholar 

  50. Sevel L, Nord-Larsen T, Raulund-Rasmussen K (2012) Biomass production of four willow clones grown as short rotation coppice on two soil types in Denmark. Biomass Bioenergy 46:664–672. doi:10.1016/j.biombioe.2012.06.030

    Article  Google Scholar 

  51. Szczukowski S, Tworkowski J, Klasa A, Stolarski M (2002) Productivity and chemical composition of wood tissues of short rotation willow coppice cultivated on arable land. Rostl Vyroba 48(9):413–419

    Google Scholar 

  52. Adler A, Verwijst T, Aronsson P (2005) Estimation and relevance of bark proportion in a willow stand. Biomass Bioenergy 29(2):102–113. doi:10.1016/j.biombioe.2005.04.003

    Article  CAS  Google Scholar 

  53. Von Fircks Y, Sennerby-Forsse L (1998) Seasonal fluctuations of starch in root and stem tissues of coppiced Salix viminalis plants grown under two nitrogen regimes. Tree Physiol 18(4):243–249. doi:10.1093/treephys/18.4.243

    Article  Google Scholar 

  54. Verwijst T (1991) Shoot mortality and dynamics of live and dead biomass in a stand of Salix viminalis. Biomass Bioenergy 1(1):35–39. doi:10.1016/0961-9534(91)90049-I

    Article  Google Scholar 

  55. Sage R (1999) Weed competition in willow coppice crops: the cause and extent of yield losses. Weed Res 39(5):399–412

    Article  Google Scholar 

  56. Salomón R, Valbuena-Carabaña M, Gil L, González-Doncel I (2013) Clonal structure influences stem growth in Quercus pyrenaica Willd. coppices: bigger is less vigorous. For Ecol Manag 296:108–118

    Article  Google Scholar 

  57. Kopp RF, White EH, Abrahamson LP, Nowak CA, Zsuffa L, Burns KF (1993) Willow biomass trials in Central New York State. Biomass Bioenergy 5(2):179–187. doi:10.1016/0961-9534(93)90099-P

    Article  Google Scholar 

  58. Lindegaard KN, Parfitt, R.i., Donaldson, G., Hunter, T (2001) Comparative trials of elite Swedish and UK biomass willow varieties. Asp Appl Biol 65 (Biomass and Energy Crops II)

  59. Nordh NE (2005) Long term changes in stand structure and biomass production in short rotation willow coppice, vol 2005, vol 120

  60. Larsen SU, Jørgensen U, Kjeldsen JB, Lærke PE (2014) Long-term yield effects of establishment method and weed control in willow for short rotation coppice (SRC). Biomass Bioenergy 71:266–274. doi:10.1016/j.biombioe.2014.10.001

    Article  Google Scholar 

  61. Quaye AK, Volk TA (2011) Soil nutrient dynamics and biomass production in an organic and inorganic fertilized short rotation willow coppice system. Asp Appl Biol 112:121–129

    Google Scholar 

Download references

Acknowledgments

Financial support for this project was provided by the Fonds de recherche du QuébecNature et technologiesProgramme de recherche en partenariat contribuant à la réduction et à la séquestration des gaz à effet de serre (2011-GZ-138839) to N. Bélanger. We gratefully thank Florence Bélanger, Carol Bouchard, Simon Constantineau, Nicola Fontana, Alexandre Fouillet, Fanny Gagné, Claude Labrecque, Julien Mourali, Jean Teodorescu, Jacinthe Ricard-piché, Marie-Claude Turmel, and Gilbert Tremblay for their help in the field and laboratory, and Daniel Lesieur for his support with dendrochronological analysis. We also thank Francis Allard, Roger Chamard, Alice Chagnon, Jean-François Lavoie, Alain Guay, and staff from the Centre de recherche sur les grains (CEROM) for giving us access to the SRCs of willow used in this study. Finally, we thank Olivier Lalonde from CEROM for providing soil samples and growth data for the ALB site.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Bélanger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fontana, M., Lafleur, B., Labrecque, M. et al. Maximum Annual Potential Yields of Salix miyabeana SX67 in Southern Quebec and Effects of Coppicing and Stool Age. Bioenerg. Res. 9, 1109–1125 (2016). https://doi.org/10.1007/s12155-016-9752-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-016-9752-0

Keywords

Navigation