Advertisement

BioEnergy Research

, Volume 9, Issue 4, pp 1053–1069 | Cite as

Financial Risk Assessment and Optimal Planning of Biofuels Supply Chains under Uncertainty

  • José Ezequiel Santibañez-Aguilar
  • Gonzalo Guillen-Gosálbez
  • Ricardo Morales-Rodriguez
  • Laureano Jiménez-Esteller
  • Agustín Jaime Castro-Montoya
  • José María Ponce-OrtegaEmail author
Article

Abstract

Biofuels provide an attractive alternative for satisfying energy demands in a more sustainable way than fossil fuels. To establish a biorefinery, an optimal plan must be implemented for the entire associated supply chain, covering such aspects as selection of feedstocks, location, and capacity of biorefineries, selection of processing technologies, production amounts and transportation flows. In this context, there are several parameters, including the availability of biomass, product demand, and product prices, which are difficult to predict because they might change drastically over the different seasons of the year as well as across years. To address this challenge, this work presents a mathematical programming model for the optimal planning of a distributed system of biorefineries that considers explicitly the uncertainty associated with the supply chain operation as well as the associated risk. The potential of the proposed approach is demonstrated through its application to the production of biofuels in Mexico, considering multiple raw materials and products.

Keywords

Biorefineries Biofuels Optimization Supply chains Financial risk Uncertainty 

Notes

Acknowledgments

The authors acknowledge the financial support obtained from REMBIO-CONACyT.

Supplementary material

12155_2016_9743_MOESM1_ESM.docx (753 kb)
ESM 1 (DOCX 753 kb)

References

  1. 1.
    Eskandarpour M, Dejax P, Miemczyk J, Péton O (2015) Sustainable supply chain network design: an optimization-oriented review. Omega 54:11–32CrossRefGoogle Scholar
  2. 2.
    Reddy BV, Ramesh S, Kumar AA, Wani SP, Ortiz R, Ceballos H, Sreedevi TK (2008) Bio-fuel crops research for energy security and rural development in developing countries. Bioenergy Res 1(3–4):248–258CrossRefGoogle Scholar
  3. 3.
    Emery I, Dunn JB, Han J, Wang M (2015) Biomass storage options influence net energy and emissions of cellulosic ethanol. Bioenergy Res 8(2):590–604CrossRefGoogle Scholar
  4. 4.
    Yue D, You F (2014) Fair profit allocation in supply chain optimization with transfer price and revenue sharing: MINLP model and algorithm for cellulosic biofuel supply chains. AIChE J 60(9):3211–3229CrossRefGoogle Scholar
  5. 5.
    Georgiadis MC, Tsiakis P, Longinidis P, Sofioglou MK (2011) Optimal design of supply chain networks under uncertain transient demand variations. Omega 39(3):254–272CrossRefGoogle Scholar
  6. 6.
    Van Dyken S, Bakken BH, Skjelbred HI (2010) Linear mixed-integer models for biomass supply chains with transport, storage and processing. Energy 35(3):1338–1350CrossRefGoogle Scholar
  7. 7.
    Natarajan K, Leduc S, Pelkonen P, Tomppo E, Dotzauer E (2012) Optimal locations for methanol and CHP production in Eastern Finland. Bioenergy Res 5(2):412–423CrossRefGoogle Scholar
  8. 8.
    Shabani N, Sowlati T (2013) A mixed integer non-linear programming model for tactical value chain optimization of a wood biomass power plant. Appl Energy 104:353–361CrossRefGoogle Scholar
  9. 9.
    Lin T, Rodríguez LF, Shastri YN, Hansen AC, Ting KC (2014) Integrated strategic and tactical biomass–biofuel supply chain optimization. Bioresour Technol 156:256–266CrossRefPubMedGoogle Scholar
  10. 10.
    Tong K, You F, Rong G (2014) Robust design and operations of hydrocarbon biofuel supply chain integrating with existing petroleum refineries considering unit cost objective. Comput Chem Eng 68:128–139CrossRefGoogle Scholar
  11. 11.
    Park SJ, Cachon GP, Lai G, Seshadri S (2015) Supply chain design and carbon penalty: monopoly vs. monopolistic competition. Prod Oper Manag. In press. doi:  10.1111/poms.12373
  12. 12.
    Ahn YC, Lee IB, Lee KH, Han JH (2015) Strategic planning design of microalgae biomass-to-biodiesel supply chain network: multi-period deterministic model. Appl Energy 154:528–542CrossRefGoogle Scholar
  13. 13.
    Sharma B, Brandes E, Khanchi A, Birrell S, Heaton E, Miguez FE (2015) Evaluation of microalgae biofuel production potential and cultivation sites using geographic information systems: a review. BioEnergy Res 8(4):1714–1734CrossRefGoogle Scholar
  14. 14.
    Iglesias C, Sesmero JP (2015) Economic analysis of supplementing sugarcane with corn for ethanol production in Brazil: a case study in Uberaba. BioEnergy Res 8(2):627–643CrossRefGoogle Scholar
  15. 15.
    Elia JA, Floudas CA (2014) Energy supply chain optimization of hybrid feedstock processes: a review. Annu Rev Chem Biomol Eng 5:147–179CrossRefPubMedGoogle Scholar
  16. 16.
    Zamboni A, Shah N, Bezzo F (2009) Spatially explicit static model for the strategic design of future bioethanol production systems. 1. Cost minimization. Energy Fuels 23(10):5121–5133CrossRefGoogle Scholar
  17. 17.
    Beamon BM (1998) Supply chain design and analysis: models and methods. Int J Prod Econ 55(3):281–294CrossRefGoogle Scholar
  18. 18.
    Mele FD, Guillén-Gosálbez G, Jiménez L (2009) Optimal planning of supply chains for bioethanol and sugar production with economic and environmental concerns. Comput Aided Chem Eng 26:997–1002CrossRefGoogle Scholar
  19. 19.
    Kostin AM, Guillén-Gosálbez G, Mele FD, Bagajewicz MJ, Jiménez L (2012) Design and planning of infrastructures for bioethanol and sugar production under demand uncertainty. Chem Eng Res Des 90(3):359–376CrossRefGoogle Scholar
  20. 20.
    Koltsaklis NE, Dagoumasb AS, Kopanosd GM, Pistikopoulosd EN, Georgiadis MC (2013) A mathematical programming approach to the optimal long-term national energy planning. Chem Eng Trans 35:625–630Google Scholar
  21. 21.
    Ng WP, Lam HL (2013) Sustainable supply network design through optimisation with clustering technique integration. Chem Eng Trans 35:661–666Google Scholar
  22. 22.
    Čuček L, Klemeš JJ, Kravanja Z (2014) Objective dimensionality reduction method within multi-objective optimisation considering total footprints. J Clean Prod 71:75–86CrossRefGoogle Scholar
  23. 23.
    Zhang Q, Shah N, Wassick J, Helling R, Van Egerschot P (2014) Sustainable supply chain optimisation: an industrial case study. Comput Ind Eng 74:68–83CrossRefGoogle Scholar
  24. 24.
    Santibañez-Aguilar JE, González-Campos JB, Ponce-Ortega JM, Serna-González M, El-Halwagi MM (2014) Optimal planning and site selection for distributed multiproduct biorefineries involving economic, environmental and social objectives. J Clean Prod 65:270–294CrossRefGoogle Scholar
  25. 25.
    You F, Tao L, Graziano DJ, Snyder SW (2012) Optimal design of sustainable cellulosic biofuel supply chains: multiobjective optimization coupled with life cycle assessment and input–output analysis. AIChE J 58(4):1157–1180CrossRefGoogle Scholar
  26. 26.
    Yu MC, Goh M (2014) A multi-objective approach to supply chain visibility and risk. Eur J Oper Res 233(1):125–130CrossRefGoogle Scholar
  27. 27.
    Sahinidis NV (2004) Optimization under uncertainty: state-of-the-art and opportunities. Comput Chem Eng 28(6):971–983CrossRefGoogle Scholar
  28. 28.
    Guillé G, Mele FD, Bagajewicz MJ, Espuna A, Puigjaner L (2005) Multiobjective supply chain design under uncertainty. Chem Eng Sci 60(6):1535–1553CrossRefGoogle Scholar
  29. 29.
    Guilleń-Gosalbez G, Grossmann IE (2009) Optimal design and planning of sustainable chemical supply chains under uncertainty. AIChE J 55(1):99–121CrossRefGoogle Scholar
  30. 30.
    McCarty T, Sesmero J (2014) Uncertainty, irreversibility, and investment in second-generation biofuels. BioEnergy Res 8(2):675–687CrossRefGoogle Scholar
  31. 31.
    Quaglia A, Sarup B, Sin G, Gani R (2013) A systematic framework for enterprise-wide optimization: synthesis and design of processing networks under uncertainty. Comput Chem Eng 59:47–62CrossRefGoogle Scholar
  32. 32.
    Franca RB, Jones EC, Richards CN, Carlson JP (2010) Multi-objective stochastic supply chain modeling to evaluate tradeoffs between profit and quality. Int J Prod Econ 127(2):292–299CrossRefGoogle Scholar
  33. 33.
    Sahling F, Kayser A (2015) Strategic supply network planning with vendor selection under consideration of risk and demand uncertainty. Omega, in press. doi:  10.1016/j.omega.2015.06.008
  34. 34.
    Akbari AA, Karimi B (2015) A new robust optimization approach for integrated multi-echelon, multi-product, multi-period supply chain network design under process uncertainty. Int J Adv Manuf Technol 79(1–4):229–244CrossRefGoogle Scholar
  35. 35.
    Gholamian N, Mahdavi I, Tavakkoli-Moghaddam R (2015) Multi-objective multi-product multi-site aggregate production planning in a supply chain under uncertainty: fuzzy multi-objective optimisation. Int J Comput Integr Manuf 1–17. doi:  10.1080/0951192X.2014.1002811
  36. 36.
    Mexican Ministry of Agriculture, SAGARPA (2015) http://www.siap.gob.mx/avance-de-siembras-y-cosechas-por-estado/. Accessed 12 Nov 2015

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • José Ezequiel Santibañez-Aguilar
    • 1
  • Gonzalo Guillen-Gosálbez
    • 2
    • 3
  • Ricardo Morales-Rodriguez
    • 4
  • Laureano Jiménez-Esteller
    • 3
  • Agustín Jaime Castro-Montoya
    • 1
  • José María Ponce-Ortega
    • 1
    Email author
  1. 1.Chemical Engineering DepartmentUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  2. 2.Centre for Process System Engineering (CPSE)Imperial College LondonLondonUK
  3. 3.Departament d’Enginyeria QuímicaUniversitat Rovira i VirgiliTarragonaSpain
  4. 4.Universidad de GuanajuatoGuanajuatoMexico

Personalised recommendations