Advertisement

BioEnergy Research

, Volume 8, Issue 4, pp 1523–1537 | Cite as

Perennial Grass Production Opportunities on Marginal Mediterranean Land

  • Ana Luisa FernandoEmail author
  • Sara Boléo
  • Bruno Barbosa
  • Jorge Costa
  • Maria Paula Duarte
  • Andrea Monti
Article

Abstract

An increasing global awareness that the supply and security of petroleum-based materials is diminishing, coupled with environmental concerns related to climate change, water availability, and soil degradation, has increased demand for more renewable, diversified, and sustainable agricultural production systems. The objective of this work was to determine if a biogenic approach, focused on producing perennial grasses on marginal Mediterranean land as feedstock for bioenergy or bio-based products, could reduce greenhouse gas (GHG) emissions without depleting soil nutrients, water supplies, or negatively impacting biological and landscape diversity. This study, funded by European Union (EU), was conducted under project optimization of perennial grasses for biomass production (OPTIMA) using environmental impact assessment (EIA) protocols to quantify local environmental impacts of producing perennial grasses, in the Mediterranean region. Different end uses were investigated and biogenic products were compared with conventional ones. The EIA assessment indicated that the biogenic system had low erodibility potential, reduced disturbance of soil properties, and minimal hydrological impacts. Less tillage and high biomass production supported biological and landscape diversity, but site-specific factors should be used to appropriately match the specific crop and location. We conclude that producing perennial grasses on marginal Mediterranean land is feasible and if appropriately managed will have relatively few environmental side effects.

Keywords

Perennial grasses Sustainability Environmental impacts Bioenergy Marginal land Mediterranean region 

Notes

Acknowledgments

The authors would like to acknowledge the European Union for financially supporting this work through the OPTIMA project: optimization of perennial grasses for biomass production, Grant Agreement No.: 289642, Collaborative project, FP7-KBBE-2011.3.1-02. We thank all our colleagues in the OPTIMA project, which contributed directly and indirectly to the contents of this paper. Special thanks go to Nils Rettenmaier and to the team at IFEU, for fruitful and informative discussions concerning this manuscript.

References

  1. 1.
    European Commission (2014) State of play on the sustainability of solid and gaseous biomass used for electricity, heating and cooling in the EU, SWD(2014) 259 final. Brussels. p.33Google Scholar
  2. 2.
    Alexopoulou E, Christou M, Cosentino SL et al (2012) Perennial grasses: important biomass source feedstock for Bio-based products and bioenergy. 20th Eur. Biomass Conf. Exhib. 18–22 June 2012. Milano, pp 201–206. doi: 10.5071/20thEUBCE2012-1CO.9.1
  3. 3.
    European Commission (2009) Directive 2009/28/EC of the European Parliament and of the Council on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Off J Eur Union, 5 June 2009, 140:16–62. doi: 10.3000/17252555.L_2009.140.eng
  4. 4.
    Dauber J, Brown C, Fernando AL et al (2012) Bioenergy from “surplus” land: environmental and socio-economic implications. BIORISK – Biodivers Ecosyst Risk Assess 7:5–50. doi: 10.3897/biorisk.7.3036
  5. 5.
    Fernando AL, Duarte MP, Almeida J et al (2010) Environmental impact assessment of energy crops cultivation in Europe. Biofuels Bioprod Biorefin 4:594–604. doi: 10.1002/bbb CrossRefGoogle Scholar
  6. 6.
    Fernando A, Duarte M, Almeida J et al (2011) Environmental pros and cons of energy crops cultivation in Europe. 19th Eur. Biomass Conf. Exhib. From Res. to Ind. Mark. Berlin, Germany, pp 38–42. doi: 10.5071/19thEUBCE2011-PD1.4
  7. 7.
    Fernando AL, Boléo S, Barbosa B et al (2012) Perennial grasses: environmental benefits and constraints of its cultivation in Europes. 20th Eur Biomass Conf Exhib. 18–22 June 2012. Milano, pp 2092–2094Google Scholar
  8. 8.
    Zhang Y, Li Y, Jiang L et al (2011) Potential of perennial crop on environmental sustainability of agriculture. Procedia Environ Sci 10:1141–1147. doi: 10.1016/j.proenv.2011.09.182 CrossRefGoogle Scholar
  9. 9.
    Barbero-Sierra C, Marques MJ, Ruíz-Pérez M (2013) The case of urban sprawl in Spain as an active and irreversible driving force for desertification. J Arid Environ 90:95–102. doi: 10.1016/j.jaridenv.2012.10.014 CrossRefGoogle Scholar
  10. 10.
    Portnov BA, Safriel UN (2004) Combating desertification in the Negev: dryland agriculture vs. dryland urbanization. J Arid Environ 56:659–680. doi: 10.1016/S0140-1963(03)00087-9 CrossRefGoogle Scholar
  11. 11.
    Cherubini F, Bird ND, Cowie A et al (2009) Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resour Conserv Recycl 53:434–447. doi: 10.1016/j.resconrec.2009.03.013 CrossRefGoogle Scholar
  12. 12.
    Rettenmaier N, Kopöen S, Gartner SO, Reinhardt GA (2010) Life cycle assessment of selected future energy crops for Europe. Biofuels Bioprod Biorefin 4:620–636. doi: 10.1002/bbb.245 CrossRefGoogle Scholar
  13. 13.
    Forte A, Zucaro A, Fagnano M et al (2015) LCA of Arundo donax L. lignocellulosic feedstock production under Mediterranean conditions. Biomass Bioenergy 73:32–47. doi: 10.1016/j.biombioe.2014.12.005 CrossRefGoogle Scholar
  14. 14.
    Zucaro A, Forte A, Fagnano M et al (2015) Comparative attributional life cycle assessment of annual and perennial lignocellulosic feedstocks production under mediterranean climate for biorefinery framework. Integr Environ Assess Manag 9999:1–7. doi: 10.1002/ieam.1604 Google Scholar
  15. 15.
    Dale VH, Kline KL, Wiens J, Fargione J (2010) Biofuels: implications for land use and biodiversity. http://www.esa.org/biofuelsreports/
  16. 16.
    Wicke B (2011) Bioenergy production on degraded and marginal land: assessing its potentials, economic performance, and environmental impacts for different settings and geographical scales. Utrecht. p. 203Google Scholar
  17. 17.
    Gelfand I, Sahajpal R, Zhang X et al (2013) Sustainable bioenergy production from marginal lands in the US Midwest. Nature 493:514–517. doi: 10.1038/nature11811 CrossRefPubMedGoogle Scholar
  18. 18.
    Rettenmaier N, Harter R, Himmler H et al (2013) Environmental sustainability assessment of the BIOCORE biorefinery concept (D 7.5). Heidelberg. p. 188Google Scholar
  19. 19.
    Rettenmaier N, Schmidt T, Al E (2015) Life cycle assessment of bioenergy and bio-based products from perennial grasses cultivated on marginal lands in the Mediterranean region. Bioenergy Re, this issueGoogle Scholar
  20. 20.
    Metzger MJ, Bunce RGH, Jongman RHG et al (2005) A climatic stratification of the environment of Europe. Glob Ecol Biogeogr 14:549–563. doi: 10.1111/j.1466-822X.2005.00190.x CrossRefGoogle Scholar
  21. 21.
    Rettenmaier N, Gartner S, Keller H, Al E (2015) WP 7 Integrated assessment of sustainability. Deliverable D 7.10: Final report on Taskd 7.1, 7.2 and 7.4. Part B: report on life cycle assessment (Task 7.2)Google Scholar
  22. 22.
    Fernando AL, Boléo S, Barbosa B et al (2015) WP 6 environmental studies. Deliverable D 6.13: environmental impact assessment. Final report on Task 6.6Google Scholar
  23. 23.
    Biewinga E, van der Bijl G (1996) Sustainability of energy crops in Europe. A methodology developed and applied, Centre for Agriculture and Environment, Utrecht, February, CLM 234, (1996), 209 ppGoogle Scholar
  24. 24.
    Collins R, Kristensen P, Thyssen N (2009) Water resources across Europe—confronting water scarcity and drought. EEA Report 2/2009. doi: 10.2800/16803
  25. 25.
    Wiegmann K, Hennenberg KJ, Fritsche UR (2008) Degraded land and sustainable bioenergy feedstock production. Jt Int Work High Nat. Value criteria potential sustain. Use Degrad Lands, Paris. Oeko-Institut, Darmstadt, pp 1–10Google Scholar
  26. 26.
    Rodrigues GS, Campanhola C, Kitamura PC (2003) An environmental impact assessment system for agricultural R&D. Environ Impact Assess Rev 23:219–244. doi: 10.1016/S0195-9255(02)00097-5 CrossRefGoogle Scholar
  27. 27.
    Slootweg R, Kolhoff A (2003) A generic approach to integrate biodiversity considerations in screening and scoping for EIA. Environ Impact Assess Rev 23:657–681. doi: 10.1016/S0195-9255(03)00114-8 CrossRefGoogle Scholar
  28. 28.
    Dauber J, Hirsch M, Simmering D et al (2003) Landscape structure as an indicator of biodiversity: matrix effects on species richness. Agric Ecosyst Environ 98:321–329. doi: 10.1016/S0167-8809(03)00092-6 CrossRefGoogle Scholar
  29. 29.
    Smeets EMW, Lewandowski IM, Faaij APC (2009) The economical and environmental performance of miscanthus and switchgrass production and supply chains in a European setting. Renew Sustain Energy Rev 13:1230–1245. doi: 10.1016/j.rser.2008.09.006 CrossRefGoogle Scholar
  30. 30.
    Mattsson B, Cederberg C, Blix L (2000) Agricultural land use in life cycle assessment (LCA): case studies of three vegetable oil crops. J Clean Prod 8:283–292. doi: 10.1016/S0959-6526(00)00027-5 CrossRefGoogle Scholar
  31. 31.
    Bringezu S, Schütz H, O’Brien M et al (2009) Assessing biofuels. UNEPGoogle Scholar
  32. 32.
    Paine LK, Todd LP, Undersander DJ et al (1996) Some ecological and socio-economic considerations for biomass energy crop production. Biomass Bioenergy 10:231–242. doi: 10.1016/0961-9534(95)00072-0 CrossRefGoogle Scholar
  33. 33.
    Fragoso C, Brown GG, Patrón JC et al (1997) Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: the role of earthworms. Appl Soil Ecol 6:17–35. doi: 10.1016/S0929-1393(96)00154-0 CrossRefGoogle Scholar
  34. 34.
    McLaughlin SB, Walsh ME (1998) Evaluating environmental consequences of producing herbaceous crops for bioenergy. Biomass Bioenergy 14:317–324. doi: 10.1016/S0961-9534(97)10066-6 CrossRefGoogle Scholar
  35. 35.
    Borjesson P (1999) Environmental effects of energy crop cultivation in Sweden—I identification and quantification. Biomass Bioenergy 16:137–154CrossRefGoogle Scholar
  36. 36.
    Prochnow A, Heiermann M, Plöchl M et al (2009) Bioenergy from permanent grassland—a review: 1. Biogas. Bioresour Technol 100:4931–4944. doi: 10.1016/j.biortech.2009.05.070 CrossRefPubMedGoogle Scholar
  37. 37.
    Prochnow A, Heiermann M, Plöchl M et al (2009) Bioenergy from permanent grassland—a review: 2. Combustion. Bioresour Technol 100:4945–4954. doi: 10.1016/j.biortech.2009.05.069 CrossRefPubMedGoogle Scholar
  38. 38.
    Boehmel C, Lewandowski I, Claupein W (2008) Comparing annual and perennial energy cropping systems with different management intensities. Agric Syst 96:224–236. doi: 10.1016/j.agsy.2007.08.004 CrossRefGoogle Scholar
  39. 39.
    Werling BP, Dickson TL, Isaacs R et al (2014) Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes. Proc Natl Acad Sci U S A 111:1652–1657. doi: 10.1073/pnas.1309492111 PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Bellamy PE, Croxton PJ, Heard MS et al (2009) The impact of growing miscanthus for biomass on farmland bird populations. Biomass Bioenergy 33:191–199. doi: 10.1016/j.biombioe.2008.07.001 CrossRefGoogle Scholar
  41. 41.
    Semere T, Slater F (2007) Ground flora, small mammal and bird species diversity in miscanthus (Miscanthus×giganteus) and reed canary-grass (Phalaris arundinacea) fields. Biomass Bioenergy 31:20–29. doi: 10.1016/j.biombioe.2006.07.001 CrossRefGoogle Scholar
  42. 42.
    Semere T, Slater F (2007) Invertebrate populations in miscanthus (Miscanthus×giganteus) and reed canary-grass (Phalaris arundinacea) fields. Biomass Bioenergy 31:30–39. doi: 10.1016/j.biombioe.2006.07.002 CrossRefGoogle Scholar
  43. 43.
    Stannard M, Crowder W (2003) Reed canary grass (Phalaris arundinacea L.), Plant guide. Pullman, Washington. http://plants.usda.gov/plantguide/pdf/pg_phar3.pdf. Accessed Nov 2009
  44. 44.
    DAISIE: Delivering Alien Invasive Species Inventories for Europe. Europe: www.europe-aliens.org. Accessed: Mai 2014
  45. 45.
    Jones GA, Sieving KE (2006) Intercropping sunflower in organic vegetables to augment bird predators of arthropods. Agric Ecosyst Environ 117:171–177. doi: 10.1016/j.agee.2006.03.026 CrossRefGoogle Scholar
  46. 46.
    Groom MJ, Gray EM, Townsend PA (2008) Biofuels and biodiversity: principles for creating better policies for biofuel production. Conserv Biol 22:602–609. doi: 10.1111/j.1523-1739.2007.00879.x CrossRefPubMedGoogle Scholar
  47. 47.
    Thomas EH, Brittingham MC, Stoleson SH (2014) Conventional oil and gas development alters forest songbird communities. J Wildl Manag 78:293–306. doi: 10.1002/jwmg.662 CrossRefGoogle Scholar
  48. 48.
    Jones NF, Pejchar L (2013) Comparing the ecological impacts of wind and oil & gas development: a landscape scale assessment. PLoS One. doi: 10.1371/journal.pone.0081391 Google Scholar
  49. 49.
    Jones NF, Pejchar L, Kiesecker JM (2015) The energy footprint: how oil, natural gas, and wind energy affect land for biodiversity and the flow of ecosystem services. Bioscience 1–12. doi: 10.1093/biosci/biu224
  50. 50.
    Propst TL, Lochmiller RL, Qualls JCW, MsBee K (1999) In situ (mesocosm) assessment of immunotoxicity risks to small mammals inhabiting petrochemical waste sites. Chemosphere 38:1049–1067CrossRefPubMedGoogle Scholar
  51. 51.
    Tang J, Wang M, Wang F et al (2011) Eco-toxicity of petroleum hydrocarbon contaminated soil. J Environ Sci 23:845–851. doi: 10.1016/S1001-0742(10)60517-7 CrossRefGoogle Scholar
  52. 52.
    Mikkonen A, Hakala KP, Lappi K et al (2012) Changes in hydrocarbon groups, soil ecotoxicity and microbiology along horizontal and vertical contamination gradients in an old landfarming field for oil refinery waste. Environ Pollut 162:374–380. doi: 10.1016/j.envpol.2011.12.012 CrossRefPubMedGoogle Scholar
  53. 53.
    Ali NA, Ahmed OE, Doheim MM (2014) Evaluation of poly-aromatic hydrocarbons (PAHs) in the aquatic species of Suez Gulf water along El-Sokhna area to the Suez refineries. Environ Monit Assess 186:1261–1269. doi: 10.1007/s10661-013-3455-1 CrossRefPubMedGoogle Scholar
  54. 54.
    Koellner T, de Baan L, Beck T et al (2013) UNEP—SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. Int J Life Cycle Assess 18:1188–12002. doi: 10.1007/s11367-013-0579-z CrossRefGoogle Scholar
  55. 55.
    Brandão M, Milà i Canals L, Clift R (2010) Soil organic carbon changes in the cultivation of energy crops: implications for GHG balances and soil quality for use in LCA. Biomass Bioenergy 35:2323–2336. doi: 10.1016/j.biombioe.2009.10.019 CrossRefGoogle Scholar
  56. 56.
    Zan CS, Fyles JW, Girouard P, Samson RA (2001) Carbon sequestration in perennial bioenergy, annual corn and uncultivated systems in southern Quebec. Agric Ecosyst Environ 86:135–144. doi: 10.1016/S0167-8809(00)00273-5 CrossRefGoogle Scholar
  57. 57.
    Kahle P, Beuch S, Boelcke B et al (2001) Cropping of Miscanthus in Central Europe: biomass production and influence on nutrients and soil organic matter. Eur J Agron 15:171–184. doi: 10.1016/S1161-0301(01)00102-2 CrossRefGoogle Scholar
  58. 58.
    Basso B, Sartori L, Bertocco M et al (2011) Economic and environmental evaluation of site-specific tillage in a maize crop in NE Italy. Eur J Agron 35:83–92. doi: 10.1016/j.eja.2011.04.002 CrossRefGoogle Scholar
  59. 59.
    Rehbein K, Sandhage-Hofmann A, Amelung W (2015) Soil carbon accrual in particle-size fractions under Miscanthus x. giganteus cultivation. Biomass Bioenergy 78:80–91. doi: 10.1016/j.biombioe.2015.04.006 CrossRefGoogle Scholar
  60. 60.
    Picco D (2010) Colture Energetiche per il didinquinamento della laguna di Venezia. Progetto Biocolt. C.E.T.A.—Centro di Ecologia Teorica ed Applicata. Venetto Agricultura—Azienda Regionale per i Settori Agricolo, Firestale e Agroalimentate, Legnaro, Italia, p. 223Google Scholar
  61. 61.
    EEA (2006) How much bioenergy can produce Europe without harming the environment? Report No 7/2006. CopenhagenGoogle Scholar
  62. 62.
    EC-JRC, EEA, Spain C, Spain C (2006) Sustainable Bioenergy Cropping Systems for the Mediterranean. Proc. Expert Consult. 9–10 Febr. 2006, Minist. Environ. Madrid, p 149: http://acm.eionet.europa.eu/docs/meetings/060209_ExpertConsult_Sust_Bioen_Medit/05_Proceedings_Bioen_Medit_WS060209.pdf. Accessed August 2012
  63. 63.
    Brittingham MC, Maloney KO, Farag AM et al (2014) Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats. Environ Sci Technol 48:11034–11047. doi: 10.1021/es5020482 CrossRefPubMedGoogle Scholar
  64. 64.
    FAO (2010) FAOWater, Development Managment Unit: http://www.fao.org/nr/water/#. Accessed February 2013
  65. 65.
    Gerbens-Leenes PW, Hoekstra AY, van der Meer T (2009) The water footprint of energy from biomass: a quantitative assessment and consequences of an increasing share of bio-energy in energy supply. Ecol Econ 68:1052–1060. doi: 10.1016/j.ecolecon.2008.07.013 CrossRefGoogle Scholar
  66. 66.
    Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335–361. doi: 10.1016/S0961-9534(03)00030-8 CrossRefGoogle Scholar
  67. 67.
    Zegada-Lizarazu W, Elbersen HW, Cosentino SL et al (2010) Agronomic aspects of future energy crops in Europe. Biofuels Bioprod Biorefin 4:674–691CrossRefGoogle Scholar
  68. 68.
    Barbosa B, Costa J, Fernando AL, Papazoglou EG (2015) Wastewater reuse for fiber crops cultivation as a strategy to mitigate desertification. Ind Crop Prod 68:17–23. doi: 10.1016/j.indcrop.2014.07.007 CrossRefGoogle Scholar
  69. 69.
    Duggan J (2005) The potential for landfill leachate treatment using willows in the UK—a critical review. Resour Conserv Recycl 45:97–113. doi: 10.1016/j.resconrec.2005.02.004 CrossRefGoogle Scholar
  70. 70.
    Tim-Tim ALS, Morgado F, Moreira S et al (2009) Cholinesterase and glutathione S-transferase activities of three mollusc species from the NW Portuguese coast in relation to the “Prestige” oil spill. Chemosphere 77:1465–1475. doi: 10.1016/j.chemosphere.2009.10.014 CrossRefPubMedGoogle Scholar
  71. 71.
    EEA (2005) Agriculture and environment in EU-15—the IRENA indicator report. Report No 6/2005. CopenhagenGoogle Scholar
  72. 72.
    Boléo S, Fernando AL, Duarte MP, Mendes B (2013) Environmental and socio-economic impact assessment of the Miscanthus production in Zn contaminated soils. 2nd Int Conf Wastes Solut Treat. Oppor 11–13 Sept. 2013, Braga, Port. pp 657–662Google Scholar
  73. 73.
    Verheijen F, Jeffery S, Bastos a C et al (2010) Biochar application to soils. A critical scientific review of effects on soil properties, processes and functions. Environment. doi: 10.2788/472
  74. 74.
    Laird DA, Brown RC, Amonette JE, Lehmann J (2009) Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioprod Biorefin 3:547–562. doi: 10.1002/bbb.169 CrossRefGoogle Scholar
  75. 75.
    Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159:3269–3282CrossRefPubMedGoogle Scholar
  76. 76.
    Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng H (2015) Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric Ecosyst Environ 206:46–59CrossRefGoogle Scholar
  77. 77.
    Sneath HE, Hutchings TR, Leij FAAM (2013) Assessment of biochar and iron filing amendments for the remediation of a metal, arsenic and phenanthrene co-contaminated spoil. Environ Pollut 178:361–366CrossRefPubMedGoogle Scholar
  78. 78.
    Murphy CW, Kendall A (2014) Life cycle analysis of biochemical cellulosic ethanol under multiple scenarios. GCB Bioenergy 1–15. doi: 10.1111/gcbb.12204
  79. 79.
    Urban RA, Bakshi BR (2009) 1,3-Propanediol from fossils versus biomass: a life cycle evaluation of emissions and ecological resources. Ind Eng Chem Res 48:8068–8082. doi: 10.1021/ie801612p CrossRefGoogle Scholar
  80. 80.
    Menetrez MY (2010) The potential environmental impact of waste from cellulosic ethanol production. J Air Waste Manage Assoc 60:245–250. doi: 10.3155/1047-3289.60.2.245 CrossRefGoogle Scholar
  81. 81.
    Scheper T (2002) Advances in biochemical engineering biotechnology. Tools and applications of biochemical engineering science. 74. J Biotechnol. doi: 10.1016/j.jbiotec.2007.09.006

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ana Luisa Fernando
    • 1
    Email author
  • Sara Boléo
    • 1
  • Bruno Barbosa
    • 1
    • 2
  • Jorge Costa
    • 1
  • Maria Paula Duarte
    • 1
  • Andrea Monti
    • 3
  1. 1.MEtRiCS, Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, FCTUniversidade Nova de LisboaCaparicaPortugal
  2. 2.Universidade Federal do Oeste da BahiaBarreirasBrazil
  3. 3.Department of Agricultural SciencesUniversity of BolognaBolognaItaly

Personalised recommendations