Skip to main content

Advertisement

Log in

Life Cycle Assessment of Bioenergy and Bio-Based Products from Perennial Grasses Cultivated on Marginal Land in the Mediterranean Region

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Agricultural systems in the Mediterranean region are increasingly getting under pressure due to both global warming and the aggravating competition for agricultural land. Perennial grasses have the potential to tackle both challenges: they are drought-resistant crops and considered not to compete for high-productivity agricultural land because they can be grown on marginal land. This paper presents the outcome of a screening life cycle assessment (LCA) conducted as part of an integrated sustainability assessment within the EU-funded project ‘Optimization of Perennial Grasses for Biomass Production’ (OPTIMA). The project aims at optimised production of Miscanthus (Miscanthus × giganteus), giant reed (Arundo donax L.), switchgrass (Panicum virgatum L.) and cardoon (Cynara cardunculus L.) on marginal land in the Mediterranean region. Different cultivation and use options were investigated by comparing the entire life cycles of bioenergy and bio-based products to equivalent conventional products. The LCA results show that the cultivation of perennial grasses on marginal land and their use for stationary heat and power generation can achieve substantial greenhouse gas emission and non-renewable energy savings, with Miscanthus allowing for savings ranging up to 13 t CO2 eq./(ha · year) and 230 GJ/(ha · year), respectively. Negative environmental impacts are less pronounced. Significant parameters include irrigation needs and moisture content at harvest, which determines energy demand for technical drying. We conclude that the cultivation of perennial grasses on marginal land in the Mediterranean region provides potentials for climate change mitigation together with comparatively low other environmental impacts, if several boundary conditions and recommendations are met.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. United Nations (2015) World population prospects. Key findings and advance tables. 2015 Revision. United Nations Department of Economic and Social Affairs, Population Division, New York, USA

  2. Rettenmaier N, Hienz G (2014) Linkages between socio-economic and environmental impacts of bioenergy. In: Rutz D, Janssen R (eds) Socio-economic impacts bioenergy production. Springer International Publishing Switzerland. doi:10.1007/978-3-319-03829-2_4. Accessed June 12, 2015

  3. Searchinger T, Heimlich R, Houghton RA et al (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240. doi:10.1126/science.1151861

    Article  CAS  PubMed  Google Scholar 

  4. Fargione J, Hill J, Tilman D et al (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238. doi:10.1126/science.1152747

    Article  CAS  PubMed  Google Scholar 

  5. Gibbs HK, Johnston M, Foley JA et al (2008) Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environ Res Lett 3:034001. doi:10.1088/1748-9326/3/3/034001

    Article  Google Scholar 

  6. Gallagher E (2008) The Gallagher review of the indirect effects of biofuels production. Renewable Fuels Agency, Sussex, England

    Google Scholar 

  7. Melillo JM, Reilly JM, Kicklighter DW et al (2009) Indirect emissions from biofuels: how important? Science 326:1397–1399. doi:10.1126/science.1180251

    Article  CAS  PubMed  Google Scholar 

  8. Ravidranath N, Manuvie R, Fargione J, et al. (2009) Greenhouse gas implications of land use and land conversion to biofuel crops. In: Howarth R, Bringezu S (eds) Biofuels: Environmental consequences and interactions with changing land use. Proceedings of the Scientific Committee on Problems of the Environment (SCOPE), International Biofuels Project Rapid Assessment, 22–25 September 2008, Gummersbach, Germany. Cornell University, Ithaca NY, USA, pp 111–125

  9. Black E (2009) The impact of climate change on daily precipitation statistics in Jordan and Israel. Atmos Sci Lett 10:192–200. doi:10.1002/asl.233

    Article  Google Scholar 

  10. Metzger M, Bunce R, Jongman R et al (2005) A climatic stratification of the environment of Europe. Glob Ecol Biogeogr 14:549–563

    Article  Google Scholar 

  11. Rosenzweig C, Tubiello F (1997) Impacts of global climate change on Mediterranean agriculture: current methodologies and future directions: an introductory essay. Mitig Adapt Strateg Glob Chang 01:219–232. doi:10.1017/S0020818300013448

    Article  Google Scholar 

  12. Rettenmaier N, Schorb A, Hienz G, Diaz-Chavez R (2012) Report on sustainability impacts of the use of marginal areas and grassy biomass (Deliverable 5.4). Global-Bio-Pact project reports. Institute for Energy and Environmental Research (IFEU), Heidelberg, Germany. http://www.globalbiopact.eu/images/stories/publications/d5_4.pdf. Accessed June 12, 2015

  13. Clifton-Brown JC, Stampfl PF, Jones MB (2004) Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Glob Chang Biol 10:509–518. doi:10.1111/j.1529-8817.2003.00749.x

    Article  Google Scholar 

  14. Styles D, Jones MB (2008) Life-cycle environmental and economic impacts of energy-crop fuel-chains: an integrated assessment of potential GHG avoidance in Ireland. Environ Sci Policy 11:294–306. doi:10.1016/j.envsci.2008.01.004

    Article  CAS  Google Scholar 

  15. Rowe RL, Street NR, Taylor G (2009) Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK. Renew Sustain Energy Rev 13:271–290. doi:10.1016/j.rser.2007.07.008

    Article  Google Scholar 

  16. Tonini D, Hamelin L, Wenzel H, Astrup T (2012) Bioenergy production from perennial energy crops: a consequential LCA of 12 bioenergy scenarios including land use changes. Environ Sci Technol 46:13521–13530. doi:10.1021/es3024435

    Article  PubMed  Google Scholar 

  17. van Dam J, Faaij APC, Hilbert J et al (2009) Large-scale bioenergy production from soybeans and switchgrass in Argentina. Part B. Environmental and socio-economic impacts on a regional level. Renew Sustain Energy Rev 13:1679–1709. doi:10.1016/j.rser.2009.03.012

    Article  Google Scholar 

  18. Bai Y, Luo L, Van Der Voet E (2010) Life cycle assessment of switchgrass-derived ethanol as transport fuel. Int J Life Cycle Assess 15:468–477. doi:10.1007/s11367-010-0177-2

    Article  CAS  Google Scholar 

  19. Cherubini F, Jungmeier G (2009) LCA of a biorefinery concept producing bioethanol, bioenergy, and chemicals from switchgrass. Int J Life Cycle Assess 15:53–66. doi:10.1007/s11367-009-0124-2

    Article  Google Scholar 

  20. Wang M, Han J, Dunn JB et al (2012) Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. Environ Res Lett 7:045905. doi:10.1088/1748-9326/7/4/045905

    Article  Google Scholar 

  21. Bergman RD, Reed DL, Taylor AM et al (2015) Cradle-to-gate life cycle assessment of switchgrass fuel pellets manufactured in the Southeastern United States. Wood Fiber Sci 47:1–13

    Google Scholar 

  22. Kretschmer W, Capaccioli S, Chiaramonti D, et al. (2013) Integrated sustainability assessment of BIOLYFE second generation bioethanol. BIOLYFE project reports. Institute for Environmental Studies Weibel & Ness (IUS), Heidelberg, Germany. http://www.biolyfe.eu/images/stories/downloads/BIOLYFE-Integrated%20sustainability%20assessment.pdf. Accessed June 12, 2015

  23. Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass and Bioenergy 25:335–361. doi:10.1016/S0961-9534(03)00030-8

    Article  Google Scholar 

  24. Smeets EMW, Lewandowski IM, Faaij APC (2009) The economical and environmental performance of Miscanthus and switchgrass production and supply chains in a European setting. Renew Sustain Energy Rev 13:1230–1245. doi:10.1016/j.rser.2008.09.006

    Article  Google Scholar 

  25. Torres CM, Ríos SD, Torras C et al (2013) Sustainability analysis of biodiesel production from Cynara cardunculus crop. Fuel 111:535–542. doi:10.1016/j.fuel.2013.04.021

    Article  CAS  Google Scholar 

  26. Dufour J, Arsuaga J, Moreno J (2013) Life cycle assessment of biodiesel production from cardoon (Cynara cardunculus) oil obtained under Spain conditions. Energy & Fuels 27:5280–5286. doi: dx.doi.org/10.1021/ef400951f

  27. Rettenmaier N, Köppen S, Gärtner SO, Reinhardt GA (2010) Life cycle assessment of selected future energy crops for Europe. Biofuels, Bioprod Bioref 620–636. doi: 10.1002/bbb.245

  28. Scheurlen K, Reinhardt GA, Gärtner SO (2005) Environmental assessment. BIO-ENERGY CHAINS project reports. Institute for Environmental Studies Weibel & Ness (IUS), Heidelberg, Germany

  29. Monti A, Fazio S, Venturi G (2009) Cradle-to-farm gate life cycle assessment in perennial energy crops. Eur J Agron 31:77–84. doi:10.1016/j.eja.2009.04.001

    Article  Google Scholar 

  30. Fazio S, Monti A (2011) Life cycle assessment of different bioenergy production systems including perennial and annual crops. Biomass and Bioenergy 35:4868–4878. doi:10.1016/j.biombioe.2011.10.014

    Article  CAS  Google Scholar 

  31. Forte A, Zucaro A, Fagnano M et al (2015) LCA of Arundo donax L. lignocellulosic feedstock production under Mediterranean conditions. Biomass and Bioenergy 73:32–47. doi:10.1016/j.biombioe.2014.12.005

    Article  CAS  Google Scholar 

  32. Zucaro A, Forte A, Fagnano M et al (2015) Comparative attributional life cycle assessment of annual and perennial lignocellulosic feedstocks production under Mediterranean climate for biorefinery framework. Integr Environ Assess Manag 9999:1–7. doi:10.1002/ieam.1604

    Google Scholar 

  33. Dale VH, Kline KL, Wiens J, Fargione J (2010) Biofuels: implications for land use and biodiversity. The Ecological Society of America, Washington, USA. http://www.esa.org/biofuelsreports/files/ESA%20Biofuels%20Report_VH%20Dale%20et%20al.pdf. Accessed June 12, 2015

  34. Wicke B (2011) Bioenergy production on degraded and marginal land. Assessing its potentials, economic performance, and environmental impacts for different settings and geographical scales. Utrecht University, Copernicus Institute. Utrecht, The Netherlands. http://dspace.library.uu.nl/handle/1874/203772. Accessed June 12, 2015

  35. Gelfand I, Sahajpal R, Zhang X et al (2013) Sustainable bioenergy production from marginal lands in the US Midwest. Nature 493:514–7. doi:10.1038/nature11811

    Article  CAS  PubMed  Google Scholar 

  36. Rettenmaier N, Gärtner S, Keller H, et al. (2015) Report on life cycle assessment (Part B of Deliverable 7.10: Final report on tasks 7.1, 7.2 and 7.4). OPTIMA project reports. Institute for Energy and Environmental Research (IFEU), Heidelberg, Germany

  37. ISO (2006) ISO 14040:2006—Environmental management—life cycle assessment—principles and framework. International Organization for Standardization

  38. ISO (2006) ISO 14044:2006—Environmental management—life cycle assessment—requirements and guidelines. International Organization for Standardization

  39. Fernando AL, Duarte MP, Almeida J et al (2010) Environmental impact assessment of energy crops cultivation in Europe. Biofuel Bioprod Bioref 4:594–604

    Article  CAS  Google Scholar 

  40. Reinhardt GA, Cornelius C (2014) Report on environmental assessment (Deliverable 6.3). SWEETFUEL project reports. Institute for Energy and Environmental Research (IFEU), Heidelberg, Germany. http://www.ifeu.de/landwirtschaft/pdf/IFEU-SWEETFUEL-D6.3%20environmental%20report%20.pdf. Accessed June 12, 2015

  41. Rettenmaier N, Harter R, Himmler H, et al. (2013) Environmental sustainability assessment of the BIOCORE biorefinery concept (Deliverable 7.5). BIOCORE project reports. Institute for Energy and Environmental Research (IFEU), Heidelberg, Germany. http://www.biocore-europe.org/file/BIOCORE_D7_5_Environmental%20assessment_2014-05-15.pdf. Accessed June 12, 2015

  42. Fernando AL, Boléo S, Barbosa B, et al. (2015) Report on Environmental Impact Assessment (Deliverable 6.13). OPTIMA project reports. FCT-UNL, Lisbon, Portugal

  43. Fernando AL, Boléo S, Barbosa B, et al. (2015) Perennial grass production opportunities on marginal Mediterranean land. Bioenergy Res., this issue

  44. van den Berg D, de Jamblinne P, Rettenmaier N, et al. (2015) Report on Technological assessment (Part A of Deliverable 7.10: Final report on tasks 7.1, 7.2 and 7.4). OPTIMA project reports. BTG / 2ZK / IFEU, Enschede, The Netherlands / Nivelles, Belgium / Heidelberg, Germany

  45. Rettenmaier N, Detzel A, Keller H, et al. (2014) Ökologische Innovationspolitik—mehr Ressourceneffizienz und Klimaschutz durch nachhaltige stoffliche Nutzungen von Biomasse [Environmental Innovation Policy—greater resource efficiency and climate protection through the sustainable material use of biomass]. In: UBA Texte 01/2014. Umweltbundesamt (Federal Environment Agency), Dessau-Roßlau, Germany

  46. Reinhardt G, Gärtner S, Häfele S, et al. (2012) Sustainable and integrated production of liquid biofuels, green chemicals and bioenergy from glycerol in biorefineries: environmental assessment (Deliverable 7.5). GLYFINERY project reports. Institute for Energy and Environmental Research (IFEU), Heidelberg, Germany. http://www.ifeu.de/landwirtschaft/pdf/GlyfineryD75-Environmental%20assessment.pdf. Accessed June 12, 2015

  47. Gärtner S, Hienz G, Keller H, Müller-Lindenlauf M (2013) Gesamtökologische Bewertung der Kaskadennutzung von Holz. Umweltauswirkungen stofflicher und energetischer Holznutzungssysteme im Vergleich [Environmental assessment of cascading use of wood. Comparison of environmental impacts of material and energy use systems of wood]. Institute for Energy and Environmental Research (IFEU), Heidelberg, Germany. http://www.ifeu.de/landwirtschaft/pdf/IFEU%202013_Umweltbewertung%20Holzkaskadennutzung.pdf. Accessed June 12, 2015

  48. JRC-IES (2010) International Reference Life Cycle Data System (ILCD) Handbook: general guide for life cycle assessment—detailed guidance. Ispra, Italy. doi: 10.2788/38479

  49. Havlík P, Schneider UA, Schmid E et al (2011) Global land-use implications of first and second generation biofuel targets. Energy Policy 39:5690–5702. doi:10.1016/j.enpol.2010.03.030

    Article  Google Scholar 

  50. Britz W, Hertel TW (2011) Impacts of EU biofuels directives on global markets and EU environmental quality: an integrated PE, global CGE analysis. Agric Ecosyst Environ 142:102–109. doi:10.1016/j.agee.2009.11.003

    Article  Google Scholar 

  51. Taheripour F, Hertel TW, Tyner WE et al (2010) Biofuels and their by-products: global economic and environmental implications. Biomass and Bioenergy 34:278–289. doi:10.1016/j.biombioe.2009.10.017

    Article  CAS  Google Scholar 

  52. Nocentini A, Di Virgilio N, Monti A (2015) Model simulation of cumulative carbon sequestration by switchgrass (Panicum virgatum L.) in the Mediterranean area using the DAYCENT model. Bioenergy Res. doi:10.1007/s12155-015-9672-4

  53. Larson ED (2006) A review of life-cycle analysis studies on liquid biofuel systems for the transport sector. Energy Sustain Dev 10:109–126. doi:10.1016/S0973-0826(08)60536-0

    Article  CAS  Google Scholar 

  54. IFEU (2015) Continuously updated internal IFEU database. Institute for Energy and Environmental Research (IFEU), Heidelberg, Germany

  55. Klobasa M, Sensfuß F, Ragwitz M (2009) CO2—Minderung im Stromsektor durch den Einsatz erneuerbarer Energien im Jahr 2006 und 2007 [CO2 abatement in the electricity sector by renewable energies for 2006 and 2007]. Fraunhofer ISI, Karlsruhe, Germany. http://www.erneuerbare-energien.de/EE/Redaktion/DE/Downloads/Gutachten/co2-minderung-stromsektor-2006-07.pdf?__blob=publicationFile&v=2. Accessed June 12, 2015

  56. Memmler M, Merkel K, Pabst J, et al. (2013) Emissionsbilanz erneuerbarer Energieträger—bestimmung der vermiedenen Emissionen im Jahr 2012 [Emission balance of renewable energies—determination of avoided emissions in 2012]. In: UBA Climate Change 15/30. Umweltbundesamt (Federal Environment Agency), Dessau-Roßlau, Germany. https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/climate_change_15_2013_emissionsbilanz_erneuerbarer_energietraeger.pdf. Accessed June 12, 2015

  57. Ecoinvent (2010) Ecoinvent database v2.2. Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland

  58. Goedkoop M, Heijungs R, Huijbregts M, et al. (2014) ReCiPe 2008: a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. First edition (revised) and data table version 1.11. Report I: Characterisation. Amersfoort, Leiden, Nijmegen, Bilthoven, The Netherlands. http://www.lcia-recipe.net/file-cabinet. Accessed June 12, 2015

  59. Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–5. doi:10.1126/science.1176985

    Article  CAS  PubMed  Google Scholar 

  60. WMO (World Meteorological Organization) (2010) Scientific assessment of ozone depletion: 2010. Geneva, Switzerland. https://www.wmo.int/pages/prog/arep/gaw/ozone_2010/ozone_asst_report.html. Accessed June 12, 2015

  61. VDI (Association of German Engineers) (2012) VDI Standard 4600: cumulative energy demand—terms, definitions, methods of calculation. Beuth Verlag GmbH, Düsseldorf, Berlin, Germany. http://www.vdi.eu/nc/guidelines/vdi_4600-kumulierter_energieaufwand_kea_begriffe_berechnungsmethoden/. Accessed June 12, 2015

  62. Borken J, Patyk A, Reinhardt GA (1999) Basisdaten für ökologische Bilanzierungen. Vieweg, Braunschweig, Wiesbaden

    Book  Google Scholar 

  63. Capros A, De Vita N, Tasios D, et al. (2013) EU energy, transport and GHG emissions: trends to 2050. Reference Scenario 2013. Publications Office of the European Union, Luxembourg. http://ec.europa.eu/transport/media/publications/doc/trends-to-2050-update-2013.pdf. Accessed June 12, 2015

  64. International Energy Agency (2012) World Energy Outlook 2012. Paris, France. http://www.worldenergyoutlook.org/publications/weo-2012/. Accessed June 12, 2015

  65. Sternberg A, Bardow A (2015) Power-to-what?—environmental assessment of energy storage systems. Energy Environ Sci 8:389–400. doi:10.1039/C4EE03051F

    Article  CAS  Google Scholar 

  66. Keller H, Gärtner S, Müller-Lindenlauf M, et al. (2014) Environmental assessment of SUPRABIO biorefineries. SUPRABIO project reports. Institute for Energy and Environmental Research (IFEU), Heidelberg, Germany. https://www.ifeu.de/landwirtschaft/pdf/IFEU_&_IUS_2014_Environmental%20assessment%20of%20SUPRABIO%20biorefineries_Update%20of%202014-10-31.pdf. Accessed June 12, 2015

Download references

Acknowledgments

We thank all our colleagues in the Optimization of Perennial Grasses for Biomass Production (OPTIMA) project for their fruitful and informative discussions throughout the course of the project, which contributed directly and indirectly to the contents of this paper. Special thanks go to Prof. S.L. Cosentino and his team at the University of Catania, Italy, for coordinating the project and for successfully bringing the internal discussion on LCA input data to a conclusion. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 289642.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Rettenmaier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 177 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, T., Fernando, A.L., Monti, A. et al. Life Cycle Assessment of Bioenergy and Bio-Based Products from Perennial Grasses Cultivated on Marginal Land in the Mediterranean Region. Bioenerg. Res. 8, 1548–1561 (2015). https://doi.org/10.1007/s12155-015-9691-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-015-9691-1

Keywords

Navigation