BioEnergy Research

, Volume 8, Issue 4, pp 1500–1511 | Cite as

Phytoremediation of Heavy Metal-Contaminated Soils Using the Perennial Energy Crops Miscanthus spp. and Arundo donax L.

  • Bruno Barbosa
  • Sara Boléo
  • Sarah Sidella
  • Jorge Costa
  • Maria Paula Duarte
  • Benilde Mendes
  • Salvatore L. Cosentino
  • Ana Luisa FernandoEmail author


Giant reed (Arundo donax) and Miscanthus spp. were tested to evaluate their tolerance and phytoremediation capacity in soils contaminated with heavy metals. Giant reed was tested under 450 and 900 mg Zn kg−1, 300 and 600 mg Cr kg−1, and 450 and 900 mg Pb kg−1 contaminated soils, while the Miscanthus genotypes M. × giganteus, M. sinensis, and M. floridulus were tested on 450 and 900 mg Zn kg−1 contaminated soils, along 2 years. Giant reed biomass production was negatively affected by the contamination; however, yield reduction was only significant under 600 mg Cr kg−1 soil. Zn contamination reduced significantly M. × giganteus production but not M. sinensis or M. floridulus yields. Yet, M. × giganteus was also the most productive. Both grasses can be considered as indicators, once metal concentration in the biomass reflected soil metal concentration. Regarding giant reed experiments, higher modified bioconcentration factors (mBCFs, 0.3–0.6) and translocation factors (TFs, 1.0–1.1) were obtained for Zn, in the contaminated soils, followed by Cr (mBCFs, 0.2–0.4, belowground organs; TFs, 0.2–0.4) and Pb (mBCFs, 0.06–0.07, belowground organs; TFs, 0.2–0.4). Metal accumulation also followed the same pattern Zn > Cr > Pb. Miscanthus genotypes showed different phytoremediation potential facing similar soil conditions. mBCFs (0.3–0.9) and TFs (0.7–1.5) were similar among species, but highest zinc accumulation was observed with M. × giganteus due to the higher biomass production. Giant reed and M. × giganteus can be considered as interesting candidates for Zn phytoextraction, favored by the metal accumulation observed and the high biomass produced. A. donax and Miscanthus genotypes showed to be well suited for phytostabilization of heavy metal contamination as these grasses prevented the leaching of heavy metal and groundwater contamination.


Arundo donax Miscanthus genotypes Heavy metals Contaminated soils Phytoremediation 



The authors would like to acknowledge the European Union for financially supporting this work through the Optimization of Perennial Grasses for Biomass Production (OPTIMA) project, Grant Agreement No. 289642, Collaborative project, FP7-KBBE-2011.3.1-02.


  1. 1.
    Benjamin M, Honeyman B (1992) Trace metals. In: Butcher S, Charlson R, Orians G, Wolfe G (eds) Global biogeochemical cycles. Academic Press Limited, San Diego, pp 317–352CrossRefGoogle Scholar
  2. 2.
    Alloway B (1995) Heavy metals in soils. Blackie Academic and Professional Publ, United States of AmericaCrossRefGoogle Scholar
  3. 3.
    Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC, Boca RatonGoogle Scholar
  4. 4.
    Fergusson J (1991) The heavy elements: chemistry, environmental impact and health effects. Pergamon Press, OxfordGoogle Scholar
  5. 5.
    Garbisu C, Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. Eur J Miner Process Environ Prot 3:58–66Google Scholar
  6. 6.
    He Z, Yang X, Stoffella P (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140CrossRefPubMedGoogle Scholar
  7. 7.
    Dauber J, Brown C, Fernando A, Finnan J, Krasuska E, Ponitka J, Styles D, Thrän D, Groenigen K, Weih M, Zah R (2012) Bioenergy from “surplus” land: environmental and socio-economic implications. BioRisk 7:5–50CrossRefGoogle Scholar
  8. 8.
    Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. Article ID 402647, doi: 10.5402/2011/402647
  9. 9.
    Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881CrossRefPubMedGoogle Scholar
  10. 10.
    Nsanganwimana F, Marchland L, Douay F, Mench M (2014) Arundo donax L., a candidate for phytomanaging water and soils contaminated by trace elements and producing plant-based feedstock, a review. Int J Phytoremediation 16:982–1017CrossRefPubMedGoogle Scholar
  11. 11.
    Baker A (1981) Accumulators and excluders: strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654CrossRefGoogle Scholar
  12. 12.
    Cunningham S, Ow D (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719PubMedCentralPubMedGoogle Scholar
  13. 13.
    Bañuelos G, Zambrzuski S, Mackey B (2000) Phytoextraction of Se from soils irrigated with selenium-laden effluent. Plant Soil 224:251–258CrossRefGoogle Scholar
  14. 14.
    Fernando A, Oliveira J (2004) Fitorremediação de solos contaminados com metais pesados—mecanismos, vantagens e limitações. Biologia Vegetal e Agro-Industrial 1:103–114Google Scholar
  15. 15.
    Raskin I, Kumar P, Dushenkov S, Salt D (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290CrossRefGoogle Scholar
  16. 16.
    Mulligan C, Yong R, Gibbs B (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207CrossRefGoogle Scholar
  17. 17.
    Yang X, Feng Y, He Z, Stoffella P (2005) Molecular mechanisms of heavy metal hyperacumulation and phytoremediation. J Trace Elem Med Biol 18:339–353CrossRefPubMedGoogle Scholar
  18. 18.
    Fernando AL, Godovikova V, Oliveira JFS (2004) Miscanthus × giganteus: contribution to a sustainable agriculture of a future/present-oriented biomaterial. Materials Science Forum, Advanced Materials Forum II 455–456: 437–441Google Scholar
  19. 19.
    Lasat MM (2000) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. JHSR 2:1–25Google Scholar
  20. 20.
    McIntyre T (2003) Phytoremediation of heavy metals from soils. Adv Biochem Eng Biotechnol 78:97–123PubMedGoogle Scholar
  21. 21.
    Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39CrossRefPubMedGoogle Scholar
  22. 22.
    Lewandowski I, Scurlock MOJ, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335–361CrossRefGoogle Scholar
  23. 23.
    El Bassam N (2010) Handbook of bioenergy crops. A complete reference to species, development and applications. Earthscan, LondonGoogle Scholar
  24. 24.
    Papazoglou E, Karantounias G, Vemmos S, Bouranis D (2005) Photosynthesis and growth responses of giant reed (Arundo donax L.) to the heavy metals Cd and Ni. Environ Int 31:243–249CrossRefPubMedGoogle Scholar
  25. 25.
    ALAC F (2005) Fitorremediação por Miscanthus × giganteus de solos contaminados com metais pesados, Ph.D. thesis. Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal (in Portuguese) Google Scholar
  26. 26.
    Fernando AL, Duarte MP, Almeida J, Boléo S, Mendes B (2010) Environmental impact assessment of energy crops cultivation in Europe. Biofuels Bioprod Biorefin 4:594–604CrossRefGoogle Scholar
  27. 27.
    Zhang Y, Li Y, Jiang L, Tian C, Li J, Xiao Z (2011) Potential of perennial crop on environmental sustainability of agriculture. Procedia Environ Sci 10:1141–1147CrossRefGoogle Scholar
  28. 28.
    Barbosa B, Costa J, Fernando AL, Papazoglou EG (2015) Wastewater reuse for fiber crops cultivation as a strategy to mitigate desertification. Ind Crop Prod 68:17–23CrossRefGoogle Scholar
  29. 29.
    Barbafieri M, Dadea C, Tassi E, Bretzel F, Fanfani L (2011) Uptake of heavy metals by native species growing in a mining area in Sardinia, Italy: discovering native flora for phytoremediation. Int J Phytoremediation 13:985–997CrossRefPubMedGoogle Scholar
  30. 30.
    Boularbah A, Schwartz C, Bitton G, Aboudrar W, Ouhammou A, Morel JL (2006) Heavy metal contamination from mining sites in South Morocco: 2. assessment of metal accumulation and toxicity in plants. Chemosphere 63:811–817CrossRefPubMedGoogle Scholar
  31. 31.
    Fernando A, Oliveira JS (2004) Effects on growth, productivity and biomass quality of Miscanthus × giganteus of soils contaminated with heavy metals. In: Van Swaaij, WPM, Fjällström T, Helm P, Grassi A (eds) Biomass for Energy, Industry and Climate Protection: Proceedings of the 2nd World Biomass Conference, ETA-Florence e WIP-Munich, pp 387–390Google Scholar
  32. 32.
    Kausar S, Mahmood Q, Raja IA, Khan A, Sultan S, Gilani MA, Shujaat S (2012) Potential of Arundo donax to treat chromium contamination. Ecol Eng 42:256–259CrossRefGoogle Scholar
  33. 33.
    Pilu R, Bucci A, Badone FC, Landoni M (2012) Giant reed (Arundo donax L.): a weed plant or a promising energy crop? Afr J Biotechnol 11:9163–9174Google Scholar
  34. 34.
    Decreto-Lei n.°276-2009 (2009) Anexo I, Valores limite de concentração relativos a metais pesados, compostos orgânicos e dioxinas e microrganismos. Diário da República 192:7154–7165 (in Portuguese)Google Scholar
  35. 35.
    Dyckhoff C, Halliwell L, Haynes R, Watts S (1996) Sampling. In: Watts S, Halliwell L (eds) Essential environmental science, methods and techniques. Routledge, London, pp 31–66Google Scholar
  36. 36.
    Baize D (2000) Guide des analyses en pedologie, 2nd edn. INRA editions, ParisGoogle Scholar
  37. 37.
    Ross DS, Ketterings Q (2011) Recommended methods for determining soil cation exchange capacity—Chapter 9. Recommended Soil Testing Procedures for the Northeastern United States. Cooperative Bulletin No. 493. Available at
  38. 38.
    Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 34:29–38CrossRefGoogle Scholar
  39. 39.
    Watts S, Halliwell L (1996) Appendix 3—detailed field and chemical methods for soil. In: Watts S, Halliwell L (eds) Essential environmental science, methods and techniques. Routledge, London, pp 475–505Google Scholar
  40. 40.
    Haigh M, Dyckhoff C (1996) Soils. In: Watts S, Halliwell L (eds) Essential environmental science, methods & techniques. Routledge, London, pp 261–303Google Scholar
  41. 41.
    Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture (USDA) Circular 939. U.S. Government Printing Office, WashingtonGoogle Scholar
  42. 42.
    Watanabe FS, Olsen SR (1965) Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from the soil. Proc Soil Sci Soc Am 29:677–678CrossRefGoogle Scholar
  43. 43.
    ISO 11466 (1995) Soil quality—extraction of trace metals soluble in aqua regia Google Scholar
  44. 44.
    Iqbal M, Bermond A, Lamy I (2013) Impact of miscanthus cultivation on trace metal availability in contaminated agricultural soils: complementary insights from kinetic extraction and physical fractionation. Chemosphere 91:287–294CrossRefPubMedGoogle Scholar
  45. 45.
    Vandecasteele C, Block CB (1993) Modern methods for trace element determination. Wiley, ChichesterGoogle Scholar
  46. 46.
    Kumar GP, Yadav SK, Thawale PR, Singh SK, Juwarkar AA (2008) Growth of Jatropha curcas on heavy metal contaminated soil amended with industrial wastes and Azotobacter—a greenhouse study. Bioresour Technol 99:2078–2082CrossRefPubMedGoogle Scholar
  47. 47.
    Yadav SK, Juwarkar AA, Kumar GP, Thawale PR, Singh SK, Chakrabarti T (2009) Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: impact of dairy sludge and biofertilizer. Bioresour Technol 100:4616–4622CrossRefPubMedGoogle Scholar
  48. 48.
    Ghosh S, Singh P (2005) Comparative uptake and phytoextraction study of soil induced chromium by accumulator and high biomass weed species. Appl Ecol Environ Res 3:67–79CrossRefGoogle Scholar
  49. 49.
    Mattina MJI, Lannucci-Berger W, Musante C, White JC (2003) Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environ Pollut 124:375–378CrossRefPubMedGoogle Scholar
  50. 50.
    Guo ZH, Miao XF (2010) Growth changes and tissues anatomical characteristics of giant reed (Arundo donax L.) in soil contaminated with arsenic, cadmium and lead. J Cent S Univ Technol 17:770–777CrossRefGoogle Scholar
  51. 51.
    Nsanganwimana F, Pourrut B, Mench M, Douay F (2014) Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. J Environ Manag 143:123–134CrossRefGoogle Scholar
  52. 52.
    Mirza N, Mahmood Q, Pervez A, Ahmad R, Farooq R, Shah MM, Azim MR (2010) Phytoremediation potencial of Arundo donax in arsenic-contaminated synthetic wastewater. Bioresour Technol 101:5815–5819CrossRefPubMedGoogle Scholar
  53. 53.
    Leung HM, Ye ZH, Wong MH (2007) Survival strategies of plants associated with arbuscular mycorrhizal fungi on toxic mine tailings. Chemosphere 66:905–915CrossRefPubMedGoogle Scholar
  54. 54.
    Kacprzak MJ, Rosikon K, Fijalkowski K, Grobelak A (2014) The effect of Trichoderma on heavy metal mobility and uptake by Miscanthus giganteus, Salix sp., Phalaris arundinacea, and Panicum virgatum. Appl Environ Soil Sci, Article ID 506142, doi: 10.1155/2014/506142
  55. 55.
    Jin X, You S (2015) Soil pollution of abandoned tailings in one zinc antimony mine and heavy metal accumulation characteristics of dominant plants. International Conference on Materials, Environmental and Biological Engineering, Guilin, pp 500–504, March 28–30, MEBE (2015)Google Scholar
  56. 56.
    Barbosa B, Costa J, Boléo S, Duarte MP, Fernando AL (2016) Phytoremediation of inorganic compounds. In: Ribeiro AB, Mateus EP, Couto N (eds) Electrokinetics across disciplines and continents—new strategies for sustainable development. Springer International Publishing, Switzerland, pp 373–400CrossRefGoogle Scholar
  57. 57.
    Fiorentino N, Fagnano M, Adamo P, Impagliazzo A, Mori M, Pepe O, Ventorino V, Zoina A (2013) Assisted phytoextraction of heavy metals: compost and Trichoderma effects on giant reed (Arundo donax L.) uptake and soil N-cycle microflora. Ital J Agron 8:244–254Google Scholar
  58. 58.
    Sabeen M, Mahmood Q, Irshad M, Fareed I, Khan A, Ullah F, Hussain J, Hayat Y, Tabassum S (2013) Cadmium phytoremediation by Arundo donax L. from contaminated soil and water. Int J Biomed Res. Article ID 324830, doi: 10.1155/2013/324830
  59. 59.
    Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529–540CrossRefPubMedGoogle Scholar
  60. 60.
    Decreto Lei n° 236/98 (1998) Normas, critérios e objectivos de qualidade com a finalidade de proteger o meio aquático e melhorar a qualidade das águas em função dos seus principais usos, Diário da República 176: 3676–3722 (in Portuguese).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Bruno Barbosa
    • 1
    • 2
  • Sara Boléo
    • 1
  • Sarah Sidella
    • 3
  • Jorge Costa
    • 1
  • Maria Paula Duarte
    • 1
  • Benilde Mendes
    • 1
  • Salvatore L. Cosentino
    • 3
  • Ana Luisa Fernando
    • 1
    Email author
  1. 1.MEtRiCS, Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, FCTUniversidade Nova de LisboaCaparicaPortugal
  2. 2.Universidade Federal do Oeste da BahiaBarreirasBrazil
  3. 3.Dipartimento di Scienze delle Produzioni Agrarie e Alimentari (DISPA)Università degli Studi di CataniaCataniaItaly

Personalised recommendations