Skip to main content

Advertisement

Log in

Feasibility of SRC Species for Growing in Mediterranean Conditions

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The suitability of poplar (Populus × canadensis Moench.—genotype ‘Neva’), black locust (Robinia pseudoacacia L.), and eucalyptus (Eucalyptus bridgesiana R. Baker) growing in short rotation coppice (SRC) system in a Mediterranean area (southern Italy), and under two management regimes, was evaluated in terms of survival, biomass yield, biomass quality, and soil fertility. The high management regime (H treatment) consisted of high plant density (6667 trees ha−1) and a 2-year harvesting cycle; the low management regime (L treatment) consisted of low plant density (1667 trees ha−1) and a 4-year harvesting cycle. The dry biomass production was 36, 13, and 9 t dry matter (dm) ha−1 in the H treatment and 25, 14, and 7 t dm ha−1 in the L treatment for eucalyptus, black locust, and poplar, respectively. The analysis of the biomass showed a superior quality for the black locust feedstock because of its low moisture and ash percentages, high heating value (HHV), and low alkali metal concentrations, although, from an environmental point of view, the high N (12.3 g kg−1) and S (0.7 g kg−1) biomass concentrations would increase the pollutant emissions generated by combustion. Eucalyptus showed a high HHV, especially for the H treatment (18.70 MJ kg−1). Its high concentrations of K (4 g kg−1) and Mg (0.8 g kg−1) could provoke slagging and fouling in combustion equipment, and the high concentrations of S and N, if leaves are considered in the harvested biomass, indicate the low quality of its feedstock. No specific poplar feedstock stood out, although it had a good HHV (19.02 MJ kg−1). The soil fertility was not affected negatively after the 4-year SRC cycle, while S content in soil showed a tendency to increase in the case of black locust cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eurostat (2013) Smarter, greener, more inclusive? Indicators to support the Europe 2020 strategy. Eurostat Statistical books. Pubblications Office of the European Union, Luxemburg, p 220

  2. EurObserv’ER (2013) The state of renewable energies in Europe. 13th EurObserv’ER Report, Observ’ER, Paris, p 200

  3. Eurostat (2013) Agriculture, forestry and fishery statistics. Eurostat Pocketbooks. Pubblications Office of the European Union, Luxemburg, p 256

  4. Njakou Djomo S, Ac A, Zenone T, De Groote T, Bergante S, Facciotto G et al (2015) Energy performances of intensive and extensive short rotation cropping systems for woody biomass production in the EU. Renew Sust Energ Rev 41:845–854

    Article  Google Scholar 

  5. DEFRA (Department for Environment, Food and Rural Affairs) (2004) Growing short rotation coppice: best practice guidelines for applicants to Defra’s energy crops scheme. DEFRA Publications, London

    Google Scholar 

  6. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Biores Technol 83:37–46

    Article  CAS  Google Scholar 

  7. Navarro A, Facciotto G, Campi P, Mastrorilli M (2014) Physiological adaptations of five poplar genotypes grown under SRC in the semi-arid Mediterranean environment. Trees 28:983–994

    Article  Google Scholar 

  8. Madeira MAV (1989) Changes in soil properties under Eucalyptus plantations in Portugal. In: Pereira JS, Landsberg JJ (eds) Biomass production by fast-growing trees. Kluwer Academic Publishers, Dordrecht, Netherlands, pp 81–89

    Chapter  Google Scholar 

  9. White DA, Beadle CL, Honeysett JL, Worledge D (1994) Stomatal conductance of Eucalyptus globulus and E. nitens in irrigated and rainfed plantations. In: Brown AG (ed) Australian tree species research in China, Proceedings No. 48. Australian Centre for International Agricultural Research, Canberra, pp 56–63

    Google Scholar 

  10. Boland DJ, Brooker MIH, Chippendale GM, Hall N, Hyland BPM, Johnson RD et al (2006) Forest trees of Australia. CSIRO Publishing, Collingwood, pp 402–403

    Google Scholar 

  11. Harden GJ (2002) Flora of New South Wales, volume 2. Revised edition. UNSW Press, Sydney, p 720

    Google Scholar 

  12. Rédei K, Osváth-Bujtás Z, Veperdi I (2008) Black locust (Robinia pseudoacacia L.) improvement in Hungary: a review. Acta Silv Lignaria Hung 4:127–132

    Google Scholar 

  13. Rédei K, Osváth-Bujtás Z, Balla I (2002) Clonal approaches to growing black locust (Robinia pseudoacacia) in Hungary: a review. Forestry 75(5):548–552

    Article  Google Scholar 

  14. Laureysens I, Deraedt W, Ceulemans R (2005) Population dynamics in a 6-year old coppice culture of poplar II. Size variability and one-sided competition of shoots and stools. For Ecol Manage 218:115–128

    Article  Google Scholar 

  15. Aylott MJ, Casella E, Tubby I, Street NR, Smith P, Taylor G (2008) Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK. New Phytol 178:358–370

    Article  PubMed  Google Scholar 

  16. Zsuffa L, Giordano E, Pryor LD, Stettler RF (1996) Trends in poplar culture: some global and regional perspectives. In: Stettler RF, Bradshaw HD Jr, Heilman PE, Hinckley TM (eds) Biology of Populus and its implications for management and conservation, part II. NRC Research Press, National Research Council of Canada, Ottawa, pp 515–539

    Google Scholar 

  17. Dillen SY, Rood SB, Ceulemans R (2010) Growth and physiology. In: Jansson S, Bhalerao RP, Groover AT (eds) Genetics and genomics of Populus. Springer, New York

    Google Scholar 

  18. Marron N, Gielen B, Brignolas F, Gao J, Johnson JD, Karnosky DF et al (2013) Abiotic stresses (chapter 7). In: Isebrands JG, Richardson J (eds) Poplars and willows: trees for society and the environment. CAB International, Wallingford, UK, pp 337–442

    Google Scholar 

  19. Campi P, Palumbo AD, Mastrorilli M (2012) Evapotranspiration estimation of crops protected by windbreak in a Mediterranean region. Agric Water Manage 104:153–162

  20. BS ISO 1171: 2010 (2010) Solid mineral fuels—determination of ash. International Organization for Standardization

    Google Scholar 

  21. Mills HA, Jones JB (1996) Plant analysis handbook II: a practical sampling, preparation, analysis, and interpretation guide. Micro–macro Publishing, Inc., Athens

    Google Scholar 

  22. Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soil by extraction with sodium bicarbonate. Department of Agriculture. Circular 939, U.S. Washington, D.C

    Google Scholar 

  23. Page AL, Miller RH, Keeney DR (1982) Methods of soil analysis, part II, 2nd edn. Agronomy Monograph 9, ASA and SSSA, Madison (WI) USA

    Google Scholar 

  24. Campi P, Modugno F, Mastrorilli M, Tomei F, Villani G, Marletto V (2014) Evapotranspiration of tomato simulated with the CRITERIA model. Ital J Agron 9(2):93–98

    Article  Google Scholar 

  25. Zdruli P, Jones RJA, Montanarella L (2004) Organic matter in the soils of southern Europe. European Soil Bureau Technical Report, EUR 21083 EN. Office for Official Publications of the European Communities, Luxembourg, p 16

    Google Scholar 

  26. Haneklaus S, Bloem E, Schnug E, de Kok LJ, Stulen I (2007) Sulfur. In: Barker AV, Pilbeam DJ (eds) Handbook of plant nutrition. CRC Press, Boca Raton, USA, pp 183–238

    Google Scholar 

  27. Hadgu F, Gebrekidan H, Kibret K, Yitaferu B (2014) Study of phosphorus adsorption and its relationship with soil properties, analyzed with Langmuir and Freundlich models. Agric For Fish 3(1):40–51

    Google Scholar 

  28. Bennett LT, Weston CJ, Judd TS, Attiwill PM, Whiteman PH (1996) The effects of fertilizers on early growth and foliar nutrient concentrations of three plantation eucalypts on high quality sites in Gippsland, southeastern Australia. For Ecol Manage 89(1):213–226

    Article  Google Scholar 

  29. Facciotto G, Nervo G (2011) Biomass production of fast growing species in a short rotation coppice in Sicily (Italy). Proc. of the 19th European Biomass Conference and Exhibition, 6–10 June. Berlin, Germany, pp 612–614

  30. Pereira H, Pardos J, Boudet AM, Mitchell O, Mughini G, Kyritsis S, Dalianis C (1996) Eucalypt plantations for production of raw-material for industry and energy in Europe. Proc. of the 9th European Bioenergy Conference on Biomass for Energy and the Environment. Pergamon, Copenhagen, Denmark, 24–27 June, pp 84–89

  31. Guo LB, Sims REH, Horne DJ (2002) Biomass production and nutrient cycling in Eucalyptus short rotation energy forests in New Zealand. I: biomass and nutrient accumulation. Biores Technol 85:273–283

    Article  CAS  Google Scholar 

  32. Bullard MJ, Mustill SJ, Carver P, Nixon PMI, Britt CP (2002) Yield improvements through modification of planting density and harvest frequency in short rotation coppice Salix spp.—1. Yield response in two morphologically diverse varieties. Biomass Bioenerg 22:15–25

    Article  Google Scholar 

  33. Grünewald H, Böhm C, Quinkenstein A, Grundmann P, Eberts J, von Wühlisch G (2009) Robinia pseudoacacia L.: a lesser known tree species for biomass production. Bioenerg Res 2:123–133

    Article  Google Scholar 

  34. Gruenewald H, Brandt BKV, Schneider BU, Bens O, Kendzia G, Hüttl RF (2007) Agroforestry systems for the production of woody biomass for energy transformation purposes. Ecol Eng 29:319–328

    Article  Google Scholar 

  35. Roehrig E (1979) Waldbauliche Aspektebeim Anbauschnellwachsender Baumarten. Forst- und Holzwirt 6:106–111

  36. Rédei K, Csiha I, Keseru Z (2011) Black locust (Robinia pseudoacacia L.) short-rotation crops under marginal site conditions. Acta Silv Lignaria Hung 7:125–132

    Google Scholar 

  37. Facciotto G, Bergante S, Gras M (2005) Black locust for SRF: economic and production evaluation. Proc. of the 14th European Biomass Conference & Exhibition, 17–21 October, Paris, France, pp 383–385

    Google Scholar 

  38. Dini-Papanastasi O (2008) Effects of clonal selection on biomass production and quality of Robinia pseudoacacia var. monophylla Carr. For Ecol Manage 256:849–854

    Article  Google Scholar 

  39. Hanover JW, Mebrahtu T (1991) Robinia pseudoacacia: temperate legume tree with worldwide potential, NFT Highlights, NFTA 91–03

    Google Scholar 

  40. Facciotto G, Bergante S, Lioia C, Rosso L, Mughini G, Zenone T, Nervo G (2006) Produttività di cloni di pioppo e salice in piantagioni a turno breve. Forest 3(2):238–252, [online] URL: http://www.sisef.it/

    Article  Google Scholar 

  41. Paris P, Mareschi L, Sabatti M, Pisanelli A, Ecosse A, Nardin F, Scarascia-Mugnozza G (2011) Comparing hybrid Populus clones for SRF across northern Italy after two biennial rotations: survival, growth and yield. Biomass Bioenerg 35:1524–1532

    Article  Google Scholar 

  42. Laureysens I, Deraedt W, Indeherberge T, Ceulemans R (2003) Population dynamics in a six-year old coppice culture of poplar. I. Clonal differences in stool mortality, shoot dynamics and shoot diameter distribution in relation to biomass production. Biomass Bioenerg 24:81–95

    Article  Google Scholar 

  43. Verlinden MS, Broeckx LS, Ceulemans R (2015) First vs. second rotation of a poplar short rotation coppice: above-ground biomass productivity and shoot dynamics. Biomass and Bioenerg 73:174–185

    Article  Google Scholar 

  44. Searle SY, Malins CJ (2014) Will energy crop yields meet expectations? Biomass and Bioenerg 65:3–12

    Article  Google Scholar 

  45. Senelwa K, Sims REH (1999) Fuel characteristics of short rotation forest biomass. Biomass Bioenerg 17:127–140

    Article  Google Scholar 

  46. Kataki R, Konwer D (2002) Fuelwood characteristics of indigenous tree species of north east India. Biomass Bioenerg 22:433–437

    Article  CAS  Google Scholar 

  47. Baxter LL, Miles TR, Miles TR Jr, Jenkins BM, Milne T, Dayton D et al (1998) The behavior of inorganic material in biomass-fired power boilers: field and laboratory experiences. Fuel Process Technol 54:47–78

    Article  CAS  Google Scholar 

  48. Klass DL (1998) Biomass for renewable energy, fuels and chemicals. Academic Press, California, 651pp

    Google Scholar 

  49. Obernberger L, Biedermann F, Widmann W, Riedl R (1997) Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions. Biomass Bioenerg 12(3):211–224

    Article  CAS  Google Scholar 

  50. Jenkins BM, Baxter LL, Miles TR Jr, Miles TR (1998) Combustion properties of biomass. Fuel Process Technol 54:17–46

    Article  CAS  Google Scholar 

  51. Li H, Li J, He Y, Li S, Liang Z, Peng C, Polle A, Luo ZB (2013) Changes in carbon, nutrients and stochiometric relations under different soil depths, plant tissues and ages in black locust plantations. Acta Physiol Plant 35:2951–2964

    Article  CAS  Google Scholar 

  52. Jug A, Makeschin F, Rehfuess KE, Hofmann-Schielle C (1999) Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. III. Soil ecological effects. For Ecol Manage 121:85–99

    Article  Google Scholar 

  53. Makeschin F (1994) Effects of energy forestry on soils. Biomass Bioenerg 6:63–79

    Article  CAS  Google Scholar 

  54. Rowe RL, Street NR, Taylor G (2009) Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK. Renew Sustain Energy Rev 13:271–290

    Article  Google Scholar 

  55. Guo LB, Sims REH (2003) Soil response to eucalypt tree planting and meatworks effluent irrigation in a short rotation forest regime in New Zealand. Biores Technol 87:341–347

    Article  CAS  Google Scholar 

  56. Pellegrino E, Di Bene C, Tozzini C, Bonari E (2011) Impact on soil quality of a 10-year-old short-rotation coppice poplar stand compared with intensive agricultural and uncultivated systems in a Mediterranean area. Agr Ecosyst Environ 140:245–254

    Article  Google Scholar 

  57. Tolbert VR, Todd J, Mann LK, Jawdy CM, Mays DA, Malik R et al (2002) Changes in soil quality and below-ground carbon storage with conversion of traditional agricultural crop lands to bioenergy crop production. Environ Poll 116(1):S97–S106

    Article  CAS  Google Scholar 

  58. Adegbidi HG, Volk TA, White EH, Abrahamson LP, Briggs RD, Bickelhaupt DH (2001) Biomass and nutrient removal by willow clones in experimental bioenergy plantations in New York State. Biomass Bioenerg 20:399–411

    Article  Google Scholar 

  59. Heilman P, Norby RJ (1998) Nutrient cycling and fertility management in temperate short-rotation forest systems. Biomass Bioenerg 14:361–370

    Article  CAS  Google Scholar 

  60. Hangs RD, Schoenau JJ, Van Rees KCJ, Bélanger N, Volk T, Jensen T (2014) First rotation biomass production and nutrient cycling within short-rotation coppice willow plantations in Saskatchewan, Canada. Bioenerg Res 7:1091–1111

    Article  CAS  Google Scholar 

  61. Celik A, Kartal A, Akdogan A, Kaska Y (2005) Determining the heavy metal pollution in Denizli (Turkey) by using Robinia pseudoacacia L. Environ Int 31(1):105–112

    Article  CAS  PubMed  Google Scholar 

  62. Gostin IN (2009) Air pollution effects on the leaf structure of some Fabaceae species. Not Bot Hort Agrobot Cluj 37(2):57–63

    Google Scholar 

Download references

Acknowledgments

This research was conducted with financial support from the FAESI project, funded by the Ministero delle Politiche Agricole Alimentari e Forestali (Italy). The authors are grateful particularly to the technicians of the experimental farm of the Research Unit for Cropping Systems in Dry Environments (CREA-SCA) in Rutigliano (Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra Navarro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarro, A., Stellacci, A.M., Campi, P. et al. Feasibility of SRC Species for Growing in Mediterranean Conditions. Bioenerg. Res. 9, 208–223 (2016). https://doi.org/10.1007/s12155-015-9677-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-015-9677-z

Keywords

Navigation