Advertisement

BioEnergy Research

, Volume 8, Issue 4, pp 1512–1522 | Cite as

Model Simulation of Cumulative Carbon Sequestration by Switchgrass (Panicum Virgatum L.) in the Mediterranean Area Using the DAYCENT Model

  • Andrea Nocentini
  • Nicola Di Virgilio
  • Andrea MontiEmail author
Article

Abstract

Literature lacks large-scale studies on cumulative C storage capacity of perennial grasses in Europe. At the same time, there is raising interest toward growing biomass crops in Europe, especially under marginal lands of the Mediterranean basin. In the present study, we used the DAYCENT model to estimate the potential of switchgrass (Panicum virgatum L.) as a bioethanol crop to store soil C in the Mediterranean basin. Two scenarios were simulated: (i) cultivation only on heathlands, shrublands, and pastures (1.76 Mha) and (ii) cultivation on heathlands, shrublands, and pastures, plus 5 % of arable lands currently used for cereals (2.97 Mha in total). Cumulative biomass resulted in 184 and 303 Mt over 15 years, while soil organic carbon (SOC) storage values were 6.1 and 12.4 Mt, respectively. Mean annual biomass yield ranged between 5.6 and 9.4 Mg ha−1, while annual SOC accumulation was 0.02 to 0.62 Mg ha−1. Fossil fuel displacement resulted in 54 and 89 Mt of C, i.e., 198 and 327 Mt of equivalent CO2 in the first and second scenarios, respectively. In the second scenario, switchgrass SOC storage was much more pronounced. However, a loss of 54 Mt of grain commodities was also caused by switchgrass cultivation on 5 % of arable lands with consequent indirect land use change (ILUC) effects. The latter were, however, quite low (16 %) when compared to environmental benefits as stored SOC.

Keywords

Marginal lands Cereal lands Biomass SOC Direct LUC Indirect LUC GHGs 

Notes

Acknowledgments

The present study was supported by the European Community, project OPTIMA—Optimization of Perennial Grasses for Biomass Production in the Mediterranean Area (Project No. 289642, FP7). Authors gratefully acknowledge John Field, Ernie Marx, Melannie Hartman, Cindy Keough, Steve Del Grosso, and William Parton for their support in the DAYCENT model usage and parameterization.

References

  1. 1.
    Lehmann J (2007) A handful of carbon. Nature 447:143-–144. doi: 10.1038/447143 CrossRefPubMedGoogle Scholar
  2. 2.
    European Energy Agency (2014) Annual European Union greenhouse gas inventory 1990–2012 and inventory report 2014. Technical Report 9/2014, pp. 1294Google Scholar
  3. 3.
    Fernando AL, Duarte MP, Almeida J, Boléo S, Mendes B (2010) Environmental impact assessment of energy crops cultivation in Europe. Biofuel Bioprod Bior 4:594–604. doi: 10.1002/bbb.249 CrossRefGoogle Scholar
  4. 4.
    Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenerg 25:335–361. doi: 10.1016/S0961-9534(03)00030-8 CrossRefGoogle Scholar
  5. 5.
    Sladden SE, Bransby DI, Aiken GE (1991) Biomass yield, composition and production costs for eight switchgrass varieties in Alabama. Biomass Bioenerg 1(2):119–122. doi: 10.1016/0961-9534(91)90034-A CrossRefGoogle Scholar
  6. 6.
    Bransby DI, McLaughlin SB, Parrish DJ (1998) A review of carbon and nitrogen balances in switchgrass grown for energy. Biomass Bioenerg 14:379–384. doi: 10.1016/S0961-9534(97)10074-5 CrossRefGoogle Scholar
  7. 7.
    Muir JP, Sanderson MA, Ocumpaugh WR, Jones RM, Reed RL (2001) Biomass production of ‘Alamo’ Switchgrass in response to nitrogen, phosphorus and row spacing. Agron J 93:896–901. doi: 10.2134/agronj2001.934896x CrossRefGoogle Scholar
  8. 8.
    Lemus R, Brummer EC, Moore KJ, Molstad NE, Burras CL, Barker MF (2002) Biomass yield and quality of 20 switchgrass populations in southern Iowa. USA Biomass Bioenerg 23:433–442. doi: 10.1016/S0961-9534(02)00073-9 CrossRefGoogle Scholar
  9. 9.
    McLaughlin SB, Kszos LA (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenerg 28:515–535. doi: 10.1016/j.biombioe.2004.05.006 CrossRefGoogle Scholar
  10. 10.
    Elbersen HW, Christian DG, Yates NE, El Bassam N, Sauerbeck G (2003) Switchgrass in NW Europe. In: Final Report FAIR 5-CT97-3701 “Switchgrass”. www.switchgrass.nlGoogle Scholar
  11. 11.
    Di Virgilio N, Monti A, Venturi G (2007) Spatial variability of switchgrass (Panicum virgatum L.) yield as related to soil parameters in a small field. Field Crop. Res 101:232–239. doi: 10.1016/j.fcr.2006.11.009 Google Scholar
  12. 12.
    Alexopoulou E, Sharma N, Papatheohari Y, Christou M, Piscioneri I, Panoutsou C, Pignatelli V (2008) Biomass yields for upland and lowland switchgrass varieties grown in the Mediterranean region. Biomass Bioenerg 32:926–933. doi: 10.1016/j.biombioe.2008.01.015 CrossRefGoogle Scholar
  13. 13.
    Monti A, Barbanti L, Zatta A, Zegada-Lizarazu W (2012) The contribution of switchgrass in reducing GHG emissions. GCB Bioenergy 4:420–434CrossRefGoogle Scholar
  14. 14.
    Turhollow AF, Perlack RD (1991) Emissions of CO2 from energy crop production. Biomass Bioenerg 1:129–135. doi: 10.1016/0961-9534(91)90021-4 CrossRefGoogle Scholar
  15. 15.
    Tufekcioglu A, Raich JW, Isenhart TM, Schultz RC (2003) Biomass, carbon and nitrogen dynamics of multi-species riparian buffers within an agricultural watershed in Iowa. USA Agroforest Syst 57:187–198. doi: 10.1023/A:1024898615284 CrossRefGoogle Scholar
  16. 16.
    Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238. doi: 10.1126/science.1152747 CrossRefPubMedGoogle Scholar
  17. 17.
    Fritsche UR, Sims REH, Monti A (2010) Direct and indirect land-use competition issues for energy crops and their sustainable production: an overview. Biofuel Bioprod Bior 4:692–704. doi: 10.1002/bbb.258 CrossRefGoogle Scholar
  18. 18.
    Gelfand I, Sahajpal R, Zhang X, Izaurralde RC, Gross KL, Robertson GP (2013) Sustainable bioenergy production from marginal lands in the US Midwest. Nature 493:514–517. doi: 10.1038/nature11811 CrossRefPubMedGoogle Scholar
  19. 19.
    Bandaru V, Izaurralde RC, Manowitz D, Link R, Zhang X, Post WM (2013) Soil carbon change and net energy associated with biofuel production on marginal lands: a regional modeling perspective. J Environ Qual 42:1802–1814. doi: 10.2134/jeq2013.05.0171 CrossRefPubMedGoogle Scholar
  20. 20.
    Wang L, Qian Y, Brummer JE, Zheng J, Wilhelm S, Parton WJ (2015) Simulated biomass, environmental impacts and best management practices for long-term switchgrass systems in a semi-arid region. Biomass Bioenerg 75:254–266. doi: 10.1016/j.biombioe.2015.02.029 CrossRefGoogle Scholar
  21. 21.
    Mildbrandt AR, Heimiller DM, Perry AD, Field CB (2014) Renewable energy potential on marginal lands in the United States. Renew Sust Energ Rev 29:473–481. doi: 10.1016/j.rser.2013.08.079 CrossRefGoogle Scholar
  22. 22.
    Chamberlaine JF, Miller SA, Frederick JR (2011) Using DAYCENT to quantify on-farm GHG emissions and N dynamics of land use conversion to N-managed switchgrass in the Southern US. Agric Ecosyst Environ 141:332–341. doi: 10.1016/j.agee.2011.03.011 CrossRefGoogle Scholar
  23. 23.
    Parton WJ, Hartman M, Ojima DS, Schimel DS (1998) DAYCENT and its land surface model: description and testing. Global Planet Change 19:35–48. doi: 10.1016/S0921-8181(98)00040-X CrossRefGoogle Scholar
  24. 24.
    Arundale RA, Dohleman FG, Heaton EA, Mcgrath JM, Voigt TB, Long SP (2014) Yields of Miscanthus × giganteus and Panicum virgatum decline with stand age in the Midwestern USA. GCB Bioenergy 6:1–13. doi: 10.1111/gcbb.12077 CrossRefGoogle Scholar
  25. 25.
    Fike JH, Parrish DJ, Wolf DD, Balasko JA, Green JT Jr, Rasnake M, Reynolds JH (2006) Switchgrass production for the upper southeastern USA: influence of cultivar and cutting frequency on biomass yields. Biomass Bioenerg 30:207–213. doi: 10.1016/j.biombioe.2005.10.008 CrossRefGoogle Scholar
  26. 26.
    Cassida KA, Muir JP, Hussey MA, Read JC, Venuto BC, Ocumpaugh WR (2005) Biomass yield and stand characteristics of switchgrass in south central U.S. environments. Crop Sci 45:673–681. doi: 10.2135/cropsci2005.0673 CrossRefGoogle Scholar
  27. 27.
    Fuentes RG, Taliaferro CM (2002) Biomass yield stability of switchgrass cultivars. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, pp pp 276–282Google Scholar
  28. 28.
    Metzger MJ, Bunce RGH, Jongman RHG, Mücher CA, Watkins JW (2005) A climatic stratification of the environment of Europe. Global Ecol Biogeogr 14:549–563. doi: 10.1111/j.1466-822X.2005.00190.x CrossRefGoogle Scholar
  29. 29.
    Hiederer R (2013) Mapping soil properties for Europe: spatial representation of soil database attributes. Luxembourg: Publications Office of the European Union - 2013 - 47pp. EUR26082EN Scientific and Technical Research series, ISSN 1831-9424. doi:10.2788/94128Google Scholar
  30. 30.
    European Environment Agency (2010) Corine Land Cover 2006 Raster Data. http://www.eea.europa.eu/data-and-maps/data/clc-2006-vector-data-version-3#tab-documentsGoogle Scholar
  31. 31.
    Greco M, Bellini G (2010) 6th Censimento Generale dell’Agricoltura. Caratteristiche strutturali delle aziende agricole, 24 ottobre 2010Google Scholar
  32. 32.
    Lee DK, Owens VN, Doolittle JJ (2007) Switchgrass and soil carbon sequestration response to ammonium nitrate, manure and harvest frequency on Conservation Reserve Program land. Agron J 99:462–468. doi: 10.2134/agronj2006.0152 CrossRefGoogle Scholar
  33. 33.
    Mehdi B, Zan C, Girouard C, Samson R (1999) Soil organic carbon sequestration under two dedicated perennial bioenergy crops. In: Biomass: a growth opportunity in green energy and value-added products. Proc. 4th Biomass Conference of the Americas, vol. 1 Oakland, California. 29 August-2 September, 1999. Pergamon, Oxford, UK, pp 17–23Google Scholar
  34. 34.
    Anderson-Teixeira KJ, Davis SC, Masters MD, Delucia EH (2009) Changes in soil organic carbon under biofuel crops. GCB Bioenergy 1:75–96. doi: 10.1111/j.1757-1707.2008.01001.x CrossRefGoogle Scholar
  35. 35.
    Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627. doi: 10.1126/science.1097396 CrossRefPubMedGoogle Scholar
  36. 36.
    Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci Soc Am J 51:1173–1179. doi: 10.2136/sssaj1987.03615995005100050015x CrossRefGoogle Scholar
  37. 37.
    Trumbore SE, Gaudinski JB (2003) The secret lives of roots. Science 21:1344–1345. doi: 10.1126/science.1091841 CrossRefGoogle Scholar
  38. 38.
    Bowden R, Wayman S, Ernst CL, Mitchell R (2010) Aboveground and belowground biomass and nitrogen retranslocation in switchgrass (panicum virgatum). Proc. ASA, CSSA and SSSA 2010 Int. Annual Meeting, Oct. 31 – Nov. 4, Long Beach, CA. ASA, CSSA and SSSA, Madison, WIGoogle Scholar
  39. 39.
    Durham C, Davies G, Bhattacharyya T (2012) Can biofuels policy work for food security? An analytical paper for discussion. DEFRA (Department for Environment Foood and Rural Affairs). PB13786 https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/69565/pb13786-biofuels-food-security-120622.pdfGoogle Scholar
  40. 40.
    Langeveld H, Dixon J, van Keulen H (2014) Biofuel cropping systems: carbon, land and food. Routledge (January 2014). ISBN13: 978-0-415-53953-1Google Scholar
  41. 41.
    Don A, Osborne B, Hastings A, Skiba U, Carter ME, Drewer J, Flessa H, Freibauer A, Hyvönen N, Jones MB, Lanigan GJ, Mander Ü, Monti A, Djomo SN, Valentine J, Walter K, Zegada-Lizarazu W, Zenone T (2012) Land-use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon. Glob Change Biol 4:372–391. doi: 10.1111/j.1757-1707.2011.01116.x CrossRefGoogle Scholar
  42. 42.
    Laborde D, Padella M, Edwards R, Marelli L (2014) JRC Scientific and Policy report: progress in estimates of ILUC with Mirage Model, pp. 48Google Scholar
  43. 43.
    European Environment Agency (2014) Trends and projections in Europe 2014: tracking progress towards Europe’s climate and energy targets for 2020. Annex 2, Table A2.2. EEA report No. 6/2014. ISSN 1977-844Google Scholar
  44. 44.
    Fargione JE, Cooper TR, Flaspohler DJ, Hill J, Lehman C, Tilman D, McCoy T, McLeod S, Nelson EJ, Oberhauser KS (2009) Bioenergy and wildlife: threats and opportunities for grassland conservation. Bioscience 59:767–777. doi: 10.1525/bio.2009.59.9.8 CrossRefGoogle Scholar
  45. 45.
    Paustian K, Antle JM, Sheehan J, Paul EA (2006) Agriculture’s role in greenhouse gas mitigation: prepared for the Pew Center on Global Climate Change, pp. 76Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Andrea Nocentini
    • 1
  • Nicola Di Virgilio
    • 2
  • Andrea Monti
    • 1
    Email author
  1. 1.Department of Agricultural SciencesUniversity of BolognaBolognaItaly
  2. 2.National Research Council of ItalyInstitute of BiometeorologyBolognaItaly

Personalised recommendations