Skip to main content

Advertisement

Log in

Solid Fuel Generation from Urban Leaf Litter in Mixture with Grass Cuttings: Chemical Composition, Energetic Characteristics, and Impact of Preprocessing

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Urban biomass from green areas is a potential resource for bioenergy recovery, which is widely unused. Different types of organic material (e.g., grass, leaf litter) usually occur in mixtures due to common collecting practice. Forty samples of grass, leaf litter (genera: Acer, Quercus, Tilia), and mixtures of both, containing one third grass or leaf litter, were investigated to evaluate the effect of the “Integrated Generation of Solid Fuel and Biogas from Biomass” (IFBB) on material and energy fluxes as well as relevant characteristics of resulting energy carriers. IFBB divides biomass into a fiber-rich press cake and a highly digestible press fluid by mashing with subsequent pressing. Ensiling of samples was successful with pH values ranging from 4.2 in grass to 4.8 in pure Tilia samples. Concentration of most minerals with exception of Ca and Mg were higher in grass than in leaf litter silage. The IFBB treatment reduced the element concentration in the press cake independently from the substrate. Linear regression models revealed high influence of the initial concentration in silage on the concentration in the press cake. The lower heating value of the press cake was nearly constant (19 MJ kg−1 DMash free) independent from mixture. Methane yields from press fluid digestion ranged from 172 (mean of leaf litter samples) to 325 lN kg−1 VS (mixture of 33 % leaf litter—66 % grass). For an evaluation of the economic and ecological potential, models of the spatial and temporal occurrence of these biomasses need to be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DM:

Dry matter

FM:

Fresh matter

GC-FID:

Gas chromatography with flame ionization detector

ICP-OES:

Inductively coupled plasma optical emission spectrometry

ICP-MS:

Inductively coupled plasma mass spectrometry

IFBB:

Integrated generation of solid fuel and biogas from biomass

LHV:

Lower heating value

MF:

Mass flow

NDF:

Neutral detergent fiber

oDM:

Organic dry matter

PF:

Press fluid

PC:

Press cake

RSC:

Ratio of standard deviation and standard error of cross-validation

sd:

Standard deviation

References

  1. Chiesura A (2004) The role of urban parks for the sustainable city. Landsc and Urban Plan 68(1):129–138. doi:10.1016/j.landurbplan.2003.08.003

    Article  Google Scholar 

  2. Bolund P, Hunhammar S (1999) Ecosystem services in urban areas. Ecol Econ 29(2):293–301. doi:10.1016/S0921-8009(99)00013-0

    Article  Google Scholar 

  3. Larondelle N, Haase D (2013) Urban ecosystem services assessment along a rural–urban gradient: a cross-analysis of European cities. Ecol Indic 29:179–190. doi:10.1016/j.ecolind.2012.12.022

    Article  Google Scholar 

  4. Springer TL (2012) Biomass yield from an urban landscape. Biomass and Bioenergy 37:82–87. doi:10.1016/j.biombioe.2011.12.029

    Article  Google Scholar 

  5. Kern M, Raussen T, Graven T et al (2012) Ökologisch sinnvolle Verwertung von Bioabfällen: Anregungen für kommunale Entscheidungsträger. BMU, Referat Öffentlichkeitsarbeit, Berlin

    Google Scholar 

  6. Prochnow A, Heiermann M, Plöchl M et al (2009) Bioenergy from permanent grassland – a review: 1. Biogas Bioresource Technol 100(21):4931–4944. doi:10.1016/j.biortech.2009.05.070

    Article  CAS  Google Scholar 

  7. Jenkins BM, Baxter LL, Miles TR et al (1998) Combustion properties of biomass. Fuel Processing Technol 54(1–3):17–46. doi:10.1016/S0378-3820(97)00059-3

    Article  CAS  Google Scholar 

  8. Liew LN, Shi J, Li Y (2012) Methane production from solid-state anaerobic digestion of lignocellulosic biomass. Biomass and Bioenergy 46:125–132. doi:10.1016/j.biombioe.2012.09.014

    Article  CAS  Google Scholar 

  9. Wachendorf M, Richter F, Fricke T et al (2009) Utilization of semi-natural grassland through integrated generation of solid fuel and biogas from biomass. I. Effects of hydrothermal conditioning and mechanical dehydration on mass flows of organic and mineral plant compounds, and nutrient balances. Grass Forage Sci 64(2):132–143

    Article  CAS  Google Scholar 

  10. Gamble JD, Jungers JM, Wyse DL et al. (2014) Harvest Date Effects on Biomass Yield, Moisture Content, Mineral Concentration, and Mineral Export in Switchgrass and Native Polycultures Managed for Bioenergy. Bioenerg. Res. doi:10.1007/s12155-014-9555-0

  11. Tonn B, Dengler V, Thumm U et al (2011) Influence of leaching on the chemical composition of grassland biomass for combustion. Grass Forage Sci 66(4):464–473. doi:10.1111/j.1365-2494.2011.00804.x

    Article  CAS  Google Scholar 

  12. Buxton DR, Muck RE, Harrison JH (eds) (2003) Silage Science and Technology, vol 42. American Society of Agronomy; Crop Science Society of America; Soil Science Society of America, Madison, Wis

    Google Scholar 

  13. McDonald P, Henderson N, Heron S (1991) The Biochemistry of Silage, 2nd edn. Chalcombe, Marlow, England

    Google Scholar 

  14. McEniry J, King C, O’Kiely P (2014) Silage fermentation characteristics of three common grassland species in response to advancing stage of maturity and additive application. Grass Forage Sci 69(3):393–404. doi:10.1111/gfs.12038

    Article  CAS  Google Scholar 

  15. Khan N, Barman K, Rastogi A et al (2012) Chemical composition and digestion kinetics of mixed silages of maize fodder-tree leaves. Anim Nutr Feed Technol 12(2):271–278

    CAS  Google Scholar 

  16. Tjandraatmadja M, MacRae IC, Norton BW (1993) Effect of the inclusion of tropical tree legumes, Gliricidia sepium and Leucaena leucocephala, on the nutritive value of silages prepared from tropical grasses. J Agricultural Sci 120:397–406

    Article  Google Scholar 

  17. Bazot S, Barthes L, Blanot D et al (2013) Distribution of non-structural nitrogen and carbohydrate compounds in mature oak trees in a temperate forest at four key phenological stages. Trees 27(4):1023–1034. doi:10.1007/s00468-013-0853-5

    Article  CAS  Google Scholar 

  18. Tyler G (2005) Changes in the concentrations of major, minor and rare-earth elements during leaf senescence and decomposition in a Fagus sylvatica forest. For Ecology and Manag 206(1–3):167–177. doi:10.1016/j.foreco.2004.10.065

    Article  Google Scholar 

  19. Piepenschneider M, de Moor S, Hensgen F et al (2015) Element concentrations in urban grass cuttings from roadside verges in the face of energy recovery. Environmental Sci Pollut Res 22(10):7808–7820. doi:10.1007/s11356-014-3881-9

    Article  CAS  Google Scholar 

  20. Hensgen F, Richter F, Wachendorf M (2011) Integrated generation of solid fuel and biogas from green cut material from landscape conservation and private households. Bioresource Technol 102(22):10441–10450. doi:10.1016/j.biortech.2011.08.119

    Article  CAS  Google Scholar 

  21. Jolliffe PA (2000) The replacement series. J Ecology 88(3):371–385. doi:10.1046/j.1365-2745.2000.00470.x

    Article  Google Scholar 

  22. Hensgen F, Bühle L, Donnison I et al (2012) Mineral concentrations in solid fuels from European semi-natural grasslands after hydrothermal conditioning and subsequent mechanical dehydration. Bioresource Technol 118:332–342

    Article  CAS  Google Scholar 

  23. Van Soest P, Robertson J, Lewis B (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74(10):3583–3597. doi:10.3168/jds.S0022-0302(91)78551-2

    Article  PubMed  Google Scholar 

  24. Friedl A, Padouvas E, Rotter H et al (2005) Prediction of heating values of biomass fuel from elemental composition. Analytica Chimica Acta 544(1–2):191–198. doi:10.1016/j.aca.2005.01.041

    Article  CAS  Google Scholar 

  25. Bühle L, Reulein J, Stülpnagel R et al (2012) Methane yields and digestion dynamics of press fluids from mechanically dehydrated maize silages using different types of digesters. Bioenergy Res 5(2):294–305. doi:10.1007/s12155-011-9127-5

    Article  Google Scholar 

  26. Zerr W (2006) Versuchsanlage zur energetischen Beurteilung von Substraten und Kofermentaten für Biogasanlagen. Umweltwissenschaften und Schadstoff-Forschung 18(4):219–227

    Article  CAS  Google Scholar 

  27. Verein Deutscher Ingenieure (2006) Guideline VDI 4630 Fermentation of organic materials; Characterisation of the substrate, sampling, collection of material data, fermentation tests. Beuth, Berlin

  28. R Core Team (2013) R: A Language and Environment. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  29. Casler MD, Vermerris W, Dixon RA (2015) Replication Concepts for Bioenergy Research Experiments. Bioenergy Res 8(1):1–16. doi:10.1007/s12155-015-9580-7

    Article  CAS  Google Scholar 

  30. Fox J, Weisberg S (2011) An {R} Companion to Applied Regression, 2nd edn. Sage, Thousand Oaks CA

    Google Scholar 

  31. Cherney J, Cherney DJR (2003) Assessing Silage Quality. In: Buxton DR, Muck RE, Harrison JH (eds) Silage Science and Technology. American Society of Agronomy; Crop Science Society of America; Soil Science Society of America, Madison, Wis

    Google Scholar 

  32. Pahlow G, Muck RE, Driehuis F et al (2003) Microbiology of Ensiling. In: Buxton DR, Muck RE, Harrison JH (eds) Silage Science and Technology. American Society of Agronomy; Crop Science Society of America; Soil Science Society of America, Madison, Wis

    Google Scholar 

  33. Hopkins A, Adamson AH, Bowling PJ (1994) Response of permanent and reseeded grassland to fertilizer nitrogen. 2. Effects on concentrations of Ca, Mg, K, Na, S, P, Mn, Zn, Cu, Co and Mo in herbage at a range of sites. Grass Forage Sci 49(1):9–20. doi:10.1111/j.1365-2494.1994.tb01971.x

    Article  CAS  Google Scholar 

  34. McGechan MB (1990) A review of losses arising during conservation of grass forage: Part 2, storage losses. J Agricultural Eng Res 45(0):1–30. doi:10.1016/S0021-8634(05)80135-0

    Article  Google Scholar 

  35. McEniry J, Finnan J, King C et al (2012) The effect of ensiling and fractionation on the suitability for combustion of three common grassland species at sequential harvest dates. Grass Forage Sci 67(4):559–568. doi:10.1111/j.1365-2494.2012.00902.x

    Article  CAS  Google Scholar 

  36. Scheffer F, Schachtschabel P, Blume H (2010) Lehrbuch der Bodenkunde, 16th edn. Spektrum Lehrbuch. Spektrum, Akad. Verl, Heidelberg, Berlin

    Google Scholar 

  37. Bühle L, Dürl G, Hensgen F et al (2014) Effects of hydrothermal conditioning and mechanical dewatering on ash melting behaviour of solid fuel produced from European semi-natural grasslands. Fuel 118:123–129. doi:10.1016/j.fuel.2013.10.063

    Article  Google Scholar 

  38. Lin P, Wang W (2001) Changes in the leaf composition, leaf mass and leaf area during leaf senescence in three species of mangroves. Ecological Eng 16(3):415–424. doi:10.1016/S0925-8574(00)00126-9

    Article  Google Scholar 

  39. Hagen-Thorn A, Varnagiryte I, Nihlgård B et al (2006) Autumn nutrient resorption and losses in four deciduous forest tree species. For Ecology Manag 228(1–3):33–39. doi:10.1016/j.foreco.2006.02.021

    Article  Google Scholar 

  40. Bonsi M, Osuji P, Tuah A (1995) Effect of supplementing teff straw with different levels of leucaena or sesbania leaves on the degradabilities of teff straw, sesbania, leucaena, tagasaste and vernonia and on certain rumen and blood metabolites in Ethiopian Menz sheep. Anim Feed Sci Technol 52(1–2):101–129. doi:10.1016/0377-8401(94)00702-B

    Article  Google Scholar 

  41. Salem AZM, Zhou C, Tan Z et al (2013) In vitro Ruminal Gas Production Kinetics of Four Fodder Trees Ensiled With or Without Molasses and Urea. J Integr Agriculture 12(7):1234–1242. doi:10.1016/S2095-3119(13)60438-4

    Article  Google Scholar 

  42. Molina-Alcaide E, Yáñez-Ruiz D (2008) Potential use of olive by-products in ruminant feeding: a review. Anim Feed Sci Technol 147(1–3):247–264. doi:10.1016/j.anifeedsci.2007.09.021

    Article  CAS  Google Scholar 

  43. Sharma R, Singh B, Sahoo A (2008) Exploring feeding value of oak (Quercus incana) leaves: Nutrient intake and utilization in calves. Livest Sci 118(1–2):157–165. doi:10.1016/j.livsci.2008.01.022

    Article  Google Scholar 

  44. Lewandowski I, Kicherer A (1997) Combustion quality of biomass: practical relevance and experiments to modify the biomass quality of Miscanthus x giganteus. Eur J Agronomy 6(3–4):163–177. doi:10.1016/S1161-0301(96)02044-8

    Article  Google Scholar 

  45. Heckman J, Kluchinski D (1996) Chemical composition of municipal leaf waste and hand-collected urban leaf litter. J Environ Qual 25(4):930. doi:10.2134/jeq1996.00472425002500040048x

    Article  CAS  Google Scholar 

  46. Joergensen RG, Scholle GA, Wolters V (2009) Dynamics of mineral components in the forest floor of an acidic beech (Fagus sylvatica L.) forest. Eur J Soil Biol 45(4):285–289. doi:10.1016/j.ejsobi.2009.04.006

    Article  CAS  Google Scholar 

  47. Steenari B, Lundberg A, Pettersson H et al (2009) Investigation of ash sintering during combustion of agricultural residues and the effect of additives. Energy Fuels 23(11):5655–5662

    Article  CAS  Google Scholar 

  48. Maathuis FJM (2009) Physiological functions of mineral macronutrients. Curr Opin in Plant Biol 12(3):250–258. doi:10.1016/j.pbi.2009.04.003

    Article  CAS  Google Scholar 

  49. Mattson W (1980) Herbivory in relation to plant nitrogen content. Annu Reviews Ecology Systematics 11:119–161

    Article  Google Scholar 

  50. Bühle L, Hensgen F, Donnison I et al (2012) Life cycle assessment of the integrated generation of solid fuel and biogas from biomass (IFBB) in comparison to different energy recovery, animal-based and non-refining management systems. Bioresource Technol 111:230–239

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for receiving funding from the European Union through the Interreg IV B regional development fund for the COMBINE Project (Nr. 299J)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meike Piepenschneider.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piepenschneider, M., Bühle, L. & Wachendorf, M. Solid Fuel Generation from Urban Leaf Litter in Mixture with Grass Cuttings: Chemical Composition, Energetic Characteristics, and Impact of Preprocessing. Bioenerg. Res. 9, 57–66 (2016). https://doi.org/10.1007/s12155-015-9661-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-015-9661-7

Keywords

Navigation