Advertisement

BioEnergy Research

, Volume 8, Issue 4, pp 1885–1895 | Cite as

Comprehensive Characterization of Sugarcane Bagasse Ash for Its Use as an Adsorbent

  • Joan Manuel Rodríguez-DíazEmail author
  • Julio Omar Prieto García
  • Luis Ramón Bravo Sánchez
  • Meuris Gurgel Carlos da Silva
  • Valdinete Lins da Silva
  • Luis E. Arteaga-PérezEmail author
Article

Abstract

This study provides a full characterization of ashes generated from the combustion of bagasse at two different sugarcane ethanol plants, one in the state of Pernambuco, Brazil (SBA1), and the other in Villa Clara, Cuba (SBA2), with a view to examining their usage as adsorbing agents for the removal of heavy metals and various organic impurities. The ash samples were analyzed for both chemical composition and for structural features that would aid their use. Chemical characterization was done spectrally, through the examination of X-ray fluorescence and diffraction, Fourier transform infrared spectroscopy, and thermally, through thermogravimetric and differential thermal analysis. Structural and surface characterization was carried out by examining N2-physisorption, helium pycnometry, and scanning electron microscopy. The results of each analysis were compared to those of recognized or potential adsorbent materials. Both ashes have structural similarities, heterogeneous morphologies, irregular surfaces, and a prevalence of superficial polar groups (carbonyl, carboxyl, and hydroxyl). Based on their physical and chemical characteristics, ashes could be used as adsorbent for both, organic (e.g., dyes, phenols, etc.) and inorganic (e.g., heavy metals) compounds.

Keywords

Bagasse ash Combustion Sugar industry Characterization Adsorbent 

Notes

Acknowledgments

We, the authors, would like to express our gratitude to CNPq, CAPES, FACEPE/NUQAAPE, CNPq/INCTAA, and USINA JB for the financial support to our research. Professor Luis Arteaga acknowledges the project BASAL PFB27 of the University of Concepción due to the support in preparing the final manuscript.

References

  1. 1.
    Lorenzini G, Biserni C, Flacco G (2010) Solar thermal and biomass energy. Wit PressGoogle Scholar
  2. 2.
    Rodíguez-Díaz JM (2007) Empleo de la ceniza de bagazo de caña en la eliminación de iones Cr (III). Tesis de Mastría, Universidad Central de Las Villas, Santa Clara, CubaGoogle Scholar
  3. 3.
    Sales A, Lima SA (2010) Use of Brazilian sugarcane bagasse ash in concrete as sand replacement. Waste Manag 30:1114–1122CrossRefPubMedGoogle Scholar
  4. 4.
    Alonso-Pippo W, Luengo CA, Koehlinger J, Garzone P, Cornacchia G (2008) Sugarcane energy use: the Cuban case. Energy Policy 36:2163–2181CrossRefGoogle Scholar
  5. 5.
    Vallejos ME, Felissia FE, Kruyeniski J, Area MC (2015) Kinetic study of the extraction of hemicellulosic carbohydrates from sugarcane bagasse by hot water treatment. Ind Crop Prod 67:1–6CrossRefGoogle Scholar
  6. 6.
    Chandel AK, da Silva SS, Carvalho W, Singh OV (2012) Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products. J Chem Technol Biotechnol 87:11–20CrossRefGoogle Scholar
  7. 7.
    de Souza A, Leite DC, Pattathil S, Hahn M, Buckeridge M (2013) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. Bioenerg Res 6:564–579CrossRefGoogle Scholar
  8. 8.
    Teixeira SR, De Souza AE, De Almeida Santos GT, Vilche Peña AF, Miguel ÁG (2008) Sugarcane bagasse ash as a potential quartz replacement in red ceramic. J Am Ceram Soc 91:1883–1887CrossRefGoogle Scholar
  9. 9.
    Balakrishnan M, Batra VS (2011) Valorization of solid waste in sugar factories with possible applications in India: a review. J Environ Manage 92:2886–2891CrossRefPubMedGoogle Scholar
  10. 10.
    Teixeira SR, Pena AF, Miguel AG (2010) Briquetting of charcoal from sugarcane bagasse fly ash (SCBFA) as an alternative fuel. Waste Manag 30:804–807CrossRefPubMedGoogle Scholar
  11. 11.
    Brito AL, Beaton P, Ballester J, Dopazo C (2003) Efficiency analysis of a boiler for suspension burning of sugarcane bagasse. Clean Air: Int Energy Clean Envi 4:87–96Google Scholar
  12. 12.
    FIESP/CIESP (2001) Ampliação da oferta de energia através da biomassa. São PauloGoogle Scholar
  13. 13.
    Cordeiro GC, Toledo RD, Fairbairn EMR (2009) Effect of calcination temperature on the pozzolanic activity of sugarcane bagasse ash. Constr Build Mater 23:3301–3303CrossRefGoogle Scholar
  14. 14.
    Souza AE, Teixeira SR, Santos GT, Costa FB, Longo E (2011) Reuse of sugarcane bagasse ash (SCBA) to produce ceramic materials. J Environ Manage 92:2774–2780CrossRefPubMedGoogle Scholar
  15. 15.
    Barroso J, Barreras F, Amaveda H, Lozano A (2003) On the optimization of boiler efficiency using bagasse as fuel☆. Fuel 82:1451–1463CrossRefGoogle Scholar
  16. 16.
    Gupta VK, Jain R, Varshney S (2007) Removal of Reactofix golden yellow 3 RFN from aqueous solution using wheat husk—an agricultural waste. J Hazard Mater 142:443–448CrossRefPubMedGoogle Scholar
  17. 17.
    Gupta VK, Rastogi A (2008) Equilibrium and kinetic modelling of cadmium(II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. J Hazard Mater 153:759–766CrossRefPubMedGoogle Scholar
  18. 18.
    Gupta VK, Rastogi A (2008) Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass. J Hazard Mater 154:347–354CrossRefPubMedGoogle Scholar
  19. 19.
    Mane VS, Deo Mall I, Chandra Srivastava V (2007) Kinetic and equilibrium isotherm studies for the adsorptive removal of brilliant green dye from aqueous solution by rice husk ash. J Environ Manage 84:390–400CrossRefPubMedGoogle Scholar
  20. 20.
    Mall ID, Srivastava VC, Agarwal NK (2006) Removal of orange-G and methyl violet dyes by adsorption onto bagasse fly ash—kinetic study and equilibrium isotherm analyses. Dyes Pigm 69:210–223CrossRefGoogle Scholar
  21. 21.
    Noonpui S, Thiravetyan P, Nakbanpote W, Netpradit S (2010) Color removal from water-based ink wastewater by bagasse fly ash, sawdust fly ash and activated carbon. Chem Eng J (Lausanne) 162:503–508CrossRefGoogle Scholar
  22. 22.
    Umamaheswaran K, Batra VS (2008) Physico-chemical characterisation of Indian biomass ashes. Fuel 87:628–638CrossRefGoogle Scholar
  23. 23.
    Batra VS, Urbonaite S, Svensson G (2008) Characterization of unburned carbon in bagasse fly ash. Fuel 87:2972–2976CrossRefGoogle Scholar
  24. 24.
    Memon GZ, Bhanger MI, Akhtar M, Talpur FN, Memon JR (2008) Adsorption of methyl parathion pesticide from water using watermelon peels as a low cost adsorbent. Chem Eng J (Lausanne) 138:616–621CrossRefGoogle Scholar
  25. 25.
    Mukherjee S, Kumar S, Misra AK, Fan M (2007) Removal of phenols from water environment by activated carbon, bagasse ash and wood charcoal. Chem Eng J (Lausanne) 129:133–142CrossRefGoogle Scholar
  26. 26.
    Srivastava VC, Prasad B, Mishra IM, Mall ID, Swamy MM (2008) Prediction of breakthrough curves for sorptive removal of phenol by bagasse fly ash packed bed. Ind Eng Chem Res 47:1603–1613CrossRefGoogle Scholar
  27. 27.
    Lataye DH, Mishra IM, Mall ID (2008) Adsorption of 2-picoline onto bagasse fly ash from aqueous solution. Chem Eng J (Lausanne) 138:35–46CrossRefGoogle Scholar
  28. 28.
    Kushwaha JP, Srivastava VC, Mall ID (2010) Treatment of dairy wastewater by commercial activated carbon and bagasse fly ash: parametric, kinetic and equilibrium modelling, disposal studies. Bioresour Technol 101:3474–3483CrossRefPubMedGoogle Scholar
  29. 29.
    AZCUBA (2014) TECNOAZUCAR realiza su asamblea de balance. http://www.azcuba.cu/. Accessed June/2015
  30. 30.
    Andrade MC (2001) Espaço e tempo na agroindústria canavieira de Pernambuco. Estudos Avançados 15:267–280CrossRefGoogle Scholar
  31. 31.
    ICDD (2015) The International Centre for Diffraction Data. http://www.icdd.com/translation/port/pdf2.htm. Accessed January/2015
  32. 32.
    Kulkarni SJ, Goswami AK (2013) Adsorption studies for organic matter removal from wastewater by using bagasse flyash in batch and column operations. International Journal of Science and Research 2:180–183Google Scholar
  33. 33.
    Nidheesh PV, Gandhimathi R, Ramesh ST, Singh TSA (2012) Adsorption and desorption characteristics of crystal violet in bottom ash column. J Urban Environ Engng 6:18–29CrossRefGoogle Scholar
  34. 34.
    Li Z, Sun X, Luo J, Hwang J, Crittenden J (2002) Unburned carbon from fly ash for mercury adsorption: II adsorption isotherms and mechanisms. J Min Mater Charact Eng 1:79–96Google Scholar
  35. 35.
    Srivastava VC, Mall ID, Mishra IM (2007) Adsorption thermodynamics and isosteric heat of adsorption of toxic metal ions onto bagasse fly ash (BFA) and rice husk ash (RHA). Chem Eng J (Lausanne) 132:267–278CrossRefGoogle Scholar
  36. 36.
    Ricou-Hoeffer P, Lecuyer I, Le Cloirec P (2001) Experimental design methodology applied to adsorption of metallic ions onto fly ash. Water Res 35:965–976CrossRefPubMedGoogle Scholar
  37. 37.
    Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319CrossRefGoogle Scholar
  38. 38.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  39. 39.
    Asadullah M (2014) Biomass gasification gas cleaning for downstream applications: a comparative critical review. Renew Sust Energ Rev 40:118–132CrossRefGoogle Scholar
  40. 40.
    Krishnani KK, Meng X, Christodoulatos C, Boddu VM (2008) Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. J Hazard Mater 153:1222–1234CrossRefPubMedGoogle Scholar
  41. 41.
    Mollah MYA, Promreuk S, Schennach R, Cocke DL, Güler R (1999) Cristobalite formation from thermal treatment of Texas lignite fly ash. Fuel 78:1277–1282CrossRefGoogle Scholar
  42. 42.
    Reddy DHK, Ramana DKV, Seshaiah K, Reddy AVR (2011) Biosorption of Ni(II) from aqueous phase by Moringa oleifera bark, a low cost biosorbent. Desalination 268:150–157CrossRefGoogle Scholar
  43. 43.
    Rodriguez-Diaz JM (2013) Caracterização e avaliação das cinzas do bagaço de cana-de-açúcar como adsorvente na remoção dos íons Cd(II), Ni(II) e Zn(II) de soluções aquosas., Universidade Federal de Pernambuco, Bibliotecária Joana D’Arc L. Salvador, CRB 4–572Google Scholar
  44. 44.
    Wasewar KL, Prasad B, Gulipalli S (2009) Adsorption of selenium using bagasse fly ash. Clean 37:534–543Google Scholar
  45. 45.
    Shah B, Tailor R, Shah A (2011) Adaptation of bagasse fly ash, a sugar industry solid waste into zeolitic material for the uptake of phenol. Environ Prog Sustain Energy 30:358–367CrossRefGoogle Scholar
  46. 46.
    Daifullah AAM, Girgis BS, Gad HMH (2003) Utilization of agro-residues (rice husk) in small waste water treatment plans. Mater Lett 57:1723–1731CrossRefGoogle Scholar
  47. 47.
    Davranche M, Lacour S, Bordas F, Bollinger J-C (2003) An easy determination of the surface chemical properties of simple and natural solids. J Chem Educ 80:76CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Joan Manuel Rodríguez-Díaz
    • 1
    Email author
  • Julio Omar Prieto García
    • 2
  • Luis Ramón Bravo Sánchez
    • 2
  • Meuris Gurgel Carlos da Silva
    • 3
  • Valdinete Lins da Silva
    • 4
  • Luis E. Arteaga-Pérez
    • 5
    Email author
  1. 1.Department of Fundamental ChemistryFederal University of PernambucoRecifeBrazil
  2. 2.Department of Life SciencesAmazonic State UniversityPuyoEcuador
  3. 3.School of Chemical EngineeringUniversity of Campinas—UNICAMPCampinasBrazil
  4. 4.Department of Chemical EngineeringFederal University of PernambucoRecifeBrazil
  5. 5.Technical Development UnitUniversity of ConcepciónConcepciónChile

Personalised recommendations