BioEnergy Research

, Volume 8, Issue 4, pp 1621–1635 | Cite as

Ecological Efficiency of Maize-Based Cropping Systems for Biogas Production

  • Nikolai Svoboda
  • Friedhelm Taube
  • Christof Kluß
  • Babette Wienforth
  • Klaus Sieling
  • Mario Hasler
  • Henning Kage
  • Susanne Ohl
  • Eberhard Hartung
  • Antje HerrmannEmail author


The design of site-adapted biogas cropping systems that combine high methane yield and low environmental impact represents a major challenge for biogas production. A 2-year field experiment was conducted at Hohenschulen, northern Germany, to quantify the nitrate leaching potential and the ecological efficiency, in terms of nitrate-N load per megaliter methane produced, of three maize-based biogas cropping systems: continuous maize (CS1), maize-whole-crop wheat followed by Italian ryegrass as catch crop (CS2), and maize-grain wheat followed by mustard as catch crop (CS3). Crops were fertilized with different levels of digestate, liquid pig manure, or mineral N fertilizer. Leachate was simulated using a plant-soil model, and the nitrate-N load was obtained as the product of measured nitrate-N concentration and the amount of simulated drainage. Regression functions quantifying the relations between nitrate-N load or ecological efficiency and total N input revealed a lower potential nitrate load for CS2 than CS1 and CS3. This indicates a less severe trade-off between methane yield and water pollution for CS2. At the N input required for maximum yield, however, CS1 resulted in lower or similar nitrate-N load than CS2 and CS3. A similar pattern was detected for ecological efficiency, which varied between 2.8 and 6.3 kg nitrate-N (megaliter CH4)−1. Mineral N fertilizer resulted in higher nitrate-N load than digestate and liquid pig manure for a given total N input. Liquid pig manure tended to cause higher nitrate-N load and lower ecological efficiency than digestate, but differences were not significant. Potential environmental benefits from biogas production can be counteracted by adverse environmental impacts such as the pollution of water bodies. The results of the short-term study suggest that choosing the appropriate N source and N rate is more important than maize cropping system selection in maximizing ecological efficiency.


Biogas residue Modeling Rotation Cover crop Methane yield Ecological efficiency 



Financial support for this research was obtained from the “Programme for the Future—Economy,” financed by the European Regional Development Fund, which is gratefully acknowledged. Special thanks go to A. Hopkins for linguistic editing as well as to R. Kopp and the entire team of the Hohenschulen experimental farm for their expert technical assistance in the laboratory and in the field. We also acknowledge the Deutscher Wetterdienst for providing weather data.

Conflict of Interest

The authors declare no competing interest.


  1. 1.
    Petersen JE (2008) Energy production with agricultural biomass: environmental implications and analytical challenges. Eur Rev Agric Econ 35:385–408CrossRefGoogle Scholar
  2. 2.
    Johnson JM, Archer D, Barbour N (2010) Greenhouse gas emission from contrasting management scenarios in the northern corn belt. Soil Sci Soc Am J 74:396–406CrossRefGoogle Scholar
  3. 3.
    Haberl H, Sprinz D, Bonazountas M, Cocco P, Desaubies Y, Henze M, Hertel O, Johnson RK, Kastrup U, Laconte P, Lange E, Novak P, Paavola J, Reenberg A, van den Hove S, Vermeire T, Wadhams P, Searchinger T (2012) Correcting a fundamental error in greenhouse gas accounting related to bioenergy. Energ Policy 45:18–23CrossRefGoogle Scholar
  4. 4.
    Reay DS, Davidson EA, Smith KA, Smith P, Melillo JM, Dentener F, Crutzen PJ (2012) Global agriculture and nitrous oxide emissions. Nat Clim Chang 2:410–416CrossRefGoogle Scholar
  5. 5.
    Twomey KM, Stillwell AS, Webber ME (2010) The unintended energy impacts of increased nitrate contamination from biofuels production. J Environ Monitor 12:218–224CrossRefGoogle Scholar
  6. 6.
    Gevers J, Hoye TT, Topping CJ, Glemnitz M, Schröder B (2011) Biodiversity and the mitigation of climate change through bioenergy: impacts of increased maize cultivation on farmland wildlife. Global Change Biol Bioenergy 3:472–482CrossRefGoogle Scholar
  7. 7.
    Nkoa R (2014) Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agron Sustain Dev 34:473–492CrossRefGoogle Scholar
  8. 8.
    Reinhardt G, Köppen S (2010) Nachhaltige Produktion und Nutzung von Biogas: Quo vadis? In: Conf. Proceed. 19. Jahrestagung Fachverband Biogas e.V., Biogas—die Energie künftiger Generationen’, 2–4 Feb 2010, Leipzig, Germany, pp 41–48Google Scholar
  9. 9.
    Laloy E (2010) Measuring and modeling the impact of intercrop management on plot-scale runoff and erosion in a continuous maize cropping system. PhD thesis, Université catholique de Louvain, BelgiumGoogle Scholar
  10. 10.
    Gutzler C, Helming K, Balla D, Dannowski R, Deumlich D, Glemnitz M, Knierim A, Mirschel W, Nendel C, Paul C, Sieber S, Stachow U, Starick A, Wieland R, Wurbs A, Zander P (2014) Agricultural land use changes—a scenario-based sustainability impact assessment for Brandenburg, Germany. Ecol Indic 48:505–517CrossRefGoogle Scholar
  11. 11.
    Vertès F, Mary B (2007) Modelling the long term SOM dynamics in fodder rotations with a variable part of grassland. In: Chabbi A (ed) Organic Matter Symposium, Poitiers, France, 17–19 July 2007, pp 549–550Google Scholar
  12. 12.
    Jans WWP, Jacobs CMJ, Kruijt B, Elbers JA, Barendse S, Moors EJ (2010) Carbon exchange of maize (Zea mays L.) crop: influence of phenology. Agr Ecosyst Environ 139:316–324CrossRefGoogle Scholar
  13. 13.
    Wachendorf M, Büchter M, Volkers K, Bobe J, Rave G, Loges R, Taube F (2006) Performance and environmental effects of forage production on sandy soils. V. Impact of grass understorey, slurry application and mineral N fertilizer on nitrate leaching under maize for silage. Grass Forage Sci 61:243–252CrossRefGoogle Scholar
  14. 14.
    Vetter A, Heiermann M, Toews T (2009) Anbausysteme für Energiepflanzen. DLG VerlagGoogle Scholar
  15. 15.
    Amon T, Amon B, Kryvoruchko V, Machmüller A, Hopfner-Sixt K, Bodiroza V, Hrbek R, Friedel J, Pötsch E, Wagentristl H, Schreiner M, Zollitsch W (2007) Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour Technol 98:3204–3212CrossRefPubMedGoogle Scholar
  16. 16.
    Grieder C, Dhillon BS, Schipprack W, Melchinger AE (2012) Breeding maize as biogas substrate in Central Europe: II. Quantitative-genetic parameters for inbred lines and correlations with testcross performance. Theor Appl Genet 124:981–988CrossRefPubMedGoogle Scholar
  17. 17.
    Grignani C, Zavattaro L, Sacco D, Monaco S (2007) Production, nitrogen and carbon balance of maize-based forage systems. Eur J Agron 26:442–453CrossRefGoogle Scholar
  18. 18.
    Jemison JM, Darby HM, Reberg-Horton SC (2012) Winter grain-short season corn double crop forage production for New England. Agron J 104:256–264CrossRefGoogle Scholar
  19. 19.
    Graß R, Heuser F, Stülpnagel R, Piepho H-P, Wachendorf M (2013) Energy crop production in double-cropping systems: results from an experiment at seven sites. Eur J Agron 51:120–129CrossRefGoogle Scholar
  20. 20.
    Schröder J, Dijk WV, Groot WD (1996) Effects of cover crops on the nitrogen fluxes in a silage maize production system. Neth J Agric Sci 44:293–315Google Scholar
  21. 21.
    Constantin J, Beaudoin N, Laurent F, Cohan J-P, Duyme F, Mary B (2011) Cumulative effects of catch crops on nitrogen uptake, leaching and net mineralization. Plant Soil 341:137–154CrossRefGoogle Scholar
  22. 22.
    Krüger ES, Ochsner TE, Baker JM, Porter PM, Reicosky DC (2012) Rye-corn silage double cropping reduces corn yield but improves environmental impacts. Agron J 104:888–896CrossRefGoogle Scholar
  23. 23.
    Zavattaro L, Monaco S, Sacco D, Grignani C (2012) Options to reduce N loss from maize in intensive cropping systems in Northern Italy. Agr Ecosyst Environ 147:24–35CrossRefGoogle Scholar
  24. 24.
    Seppälä M, Pyykkönen V, Väisänen A, Rintala J (2013) Biomethane production from maize and liquid cow manure—effect of share of maize, post-methanation potential and digestate characteristics. Fuel 107:209–216CrossRefGoogle Scholar
  25. 25.
    Gutser R, Ebertseder T, Weber A, Schraml M, Schmidhalter U (2005) Short-term and residual availability of nitrogen after long-term application of organic fertilizers on arable land. J Plant Nutr Soil Sci 168:439–446CrossRefGoogle Scholar
  26. 26.
    Gericke D, Bornemann L, Kage H, Pacholski A (2012) Modelling ammonia losses after field application of biogas slurry in energy crop rotations. Water Air Soil Pollut 223:29–47CrossRefGoogle Scholar
  27. 27.
    Chantigny MH, Angers DA, Bélanger G, Rochette P, Eriksen-Hamel N, Bittman S, Buckley K, Massé D, Gasser M-O (2008) Yield and nutrient export of grain corn fertilized with raw and treated liquid swine manure. Agron J 100:1303–1309CrossRefGoogle Scholar
  28. 28.
    Wolf U, Fuß R, Höppner F, Flessa H (2014) Contribution of N2O and NH3 to total greenhouse gas emission from fertilization: results from a sandy soil fertilized with nitrate and biogas digestate with and without nitrification inhibitor. Nutr Cycl Agroecosyst 100:121–134CrossRefGoogle Scholar
  29. 29.
    Svoboda N, Taube F, Wienforth B, Kluß C, Kage H, Herrmann A (2013) Nitrogen leaching losses after biogas residue application to maize. Soil Tillage Res 130:69–80CrossRefGoogle Scholar
  30. 30.
    Wienforth B (2011) Cropping systems for biomethane production: a simulation based analysis of yield, yield potential and resource use efficiency. Doctoral thesis, Kiel University, GermanyGoogle Scholar
  31. 31.
    Böttcher J, Frede H-G, Meyer B (1984) Atmosphärische Deposition von Bioelementen in Agrarökosysteme 1. Mitteilung: Deposition von Bioelementen mit dem Niederschlag. J Plant Nutr Soil Sci 147:753–759Google Scholar
  32. 32.
    VDI (2006) Fermentation of organic materials—characterisation of the substrate, sampling, collection of material data, fermentation tests. VDI-Richtlinie 4630Google Scholar
  33. 33.
    Helffrich D, Oechsner H (2003) The Hohenheim biogas yield test. Landtechnik 58:148–149Google Scholar
  34. 34.
    Yang HS, Dobermann A, Lindquist JL, Walters DT, Arkebauer TJ, Cassman KG (2004) Hybrid-maize—a maize simulation model that combines two crop modeling approaches. Field Crop Res 87:131–154CrossRefGoogle Scholar
  35. 35.
    Wiesler F, Horst W (1994) Root growth and nitrate utilization of maize cultivars under field conditions. Plant Soil 163:267–277CrossRefGoogle Scholar
  36. 36.
    Sobotik M (1992) Durchwurzelungsdichte und -tiefe unter Dauergrünland bei steigenden Gaben von Rindergülle und ihr Einfluss auf die Sickerwassermenge. In: BAL Bericht 2. Lysimetertagung 69–78Google Scholar
  37. 37.
    Pietola L, Alakukku L (2005) Root growth dynamics and biomass input by nordic annual field crops. Agr Ecosyst Environ 108:135–144CrossRefGoogle Scholar
  38. 38.
    Müller K (2009) Remote sensing and simulation modelling as tools for improving nitrogen efficiency for winter oilseed rape (Brassica napus L.). Doctoral thesis, Kiel University, GermanyGoogle Scholar
  39. 39.
    Mayer DG, Butler DG (1993) Statistical validation. Ecol Model 68:21–32CrossRefGoogle Scholar
  40. 40.
    Fox DG (1981) Judging air quality model performance: a summary of the AMS 870 workshop on dispersion models performance. Bull Am Meteorol Soc 62:599–609CrossRefGoogle Scholar
  41. 41.
    R Development Core Team (2005) R: a language and environment for statistical computing, reference index version 2.2.1. R Foundation for Statistical Computing, Vienna, ISBN 3-900051-07-0, URL Google Scholar
  42. 42.
    Bretz F, Hothorn T, Westfall P (2011) Multiple comparisons using R. Chapman & Hall/CRC PressGoogle Scholar
  43. 43.
    Schaarschmidt F, Vaas L (2009) Analysis of trials with complex treatment structure using multiple contrast tests. Hortscience 44:188–195Google Scholar
  44. 44.
    Sieling K, Herrmann A, Wienforth B, Taube F, Ohl S, Hartung E, Kage H (2013) Biogas cropping systems: short term response of yield performance and N use efficiency to biogas residue application. Eur J Agron 47:44–54CrossRefGoogle Scholar
  45. 45.
    KTBL, Kuratorium für Technik und Bauwesen in der Landwirtschaft (2010) Gasausbeute in landwirtschaftlichen Biogasanlagen. KTBL, DarmstadtGoogle Scholar
  46. 46.
    Smith KA, Metcalfe P, Grylls J, Jeffrey W, Sinclair A (2007) Nutrient value of digestate from farm-based biogas plants in Scotland. Report for Scottish Executive Environment and Rural Affairs Department—ADA/009/06. Accessed 30 Oct 2014
  47. 47.
    Sensel K, Nielsen K, Wragge V (2011) Humusreproduktion von Gärprodukten aus Biogasanlagen. In: KTBL (ed) Biogas in der Landwirtschaft—Stand und Perspektiven. KTBL-Schrift 488, pp 382–383Google Scholar
  48. 48.
    Fouda S, von Tucher S, Lichti F, Schmidhalter U (2013) Nitrogen availability of various biogas residues applied to ryegrass. J Plant Nutr Soil Sci 176:572–584CrossRefGoogle Scholar
  49. 49.
    Gemmeke B, Rieger C (2009) Biogasmessprogramm II: 61 Biogasanlagen im Vergleich. Agency for Renewable Resources, Gülzow, Accessed 30 Oct 2014Google Scholar
  50. 50.
    Janssen BH (1996) Nitrogen mineralization in relation to C:N ratio and decomposability of organic materials. Plant Soil 181:39–45CrossRefGoogle Scholar
  51. 51.
    Ni K, Pacholski A, Gericke D, Kage H (2012) Analysis of ammonia losses after field application of biogas slurries by an empirical model. J Plant Nutr Soil Sci 175:253–264CrossRefGoogle Scholar
  52. 52.
    Gagnon B, Ziadi N, Chantigny MH, Bélanger G, Massé DI (2012) Biosolids from treated swine manure and papermill residues affect corn fertilizer value. Agron J 104:483–492CrossRefGoogle Scholar
  53. 53.
    Pötsch E (2005) Abschlussbericht zum Forschungsprojekt BAL 2941. Nährstoffgehalt von Gärrückständen aus landwirtschaftlichen Biogasanlagen und deren Einsatz im Dauergrünland. Accessed 30 Oct 2014
  54. 54.
    Walsh JJ, Jones DL, Edward-Jones G, Williams AP (2012) Replacing inorganic fertilizer with anaerobic digestate may maintain agricultural productivity at less environmental cost. J Plant Nutr Soil Sci 175:840–845CrossRefGoogle Scholar
  55. 55.
    Brenner A, Clemens J (2005) Vergleich der Stoffflüsse mit ökologischer Bilanzierung von zwei Kofermentationsanlagen. Technical report, Univ. Bonn, Germany, USL 128, Accessed 30 Oct 2014Google Scholar
  56. 56.
    Jäkel K, Mau S (1999) Umweltwirkung von Biogasgülle. Final Report. LfL, Dresden. Accessed 30 Oct 2014
  57. 57.
    Martinez J, Guiraud G (1990) A lysimeter study of the effects of a ryegrass catch crop, during a winter wheat/maize rotation, on nitrate leaching and on the following crop. Eur J Soil Sci 41:5–16CrossRefGoogle Scholar
  58. 58.
    Schröder JJ, Holte LT, Brouwer G (1997) Response of silage maize to placement of cattle slurry. Neth J Agric Sci 45:249–261Google Scholar
  59. 59.
    Constantin J, Mary B, Laurent F, Aubrion G, Fontaine A, Kerveillant P, Beaudoin N (2010) Effects of catch crops, no till and reduced nitrogen fertilization on nitrogen leaching and balance in three long-term experiments. Agr Ecosyst Environ 135:268–278CrossRefGoogle Scholar
  60. 60.
    Baker JM, Griffis TJ (2011) Evaluating the potential use of winter cover crops in corn-soybean systems for sustainable co-production of food and fuel. Agr Forest Meteorol 149:2120–2132CrossRefGoogle Scholar
  61. 61.
    Feyereisen GW, Camargo GGT, Baxter RE, Baker JM, Richard TL (2013) Cellulosic biofuel potential of a winter rye double crop across the U.S. corn-soybean belt. Agron J 105:631–642CrossRefGoogle Scholar
  62. 62.
    Berzsenyi Z, Győrffy B, Lap D (2000) Effect of crop rotation and fertilisation on maize and wheat yields and yield stability in a long-term experiment. Eur J Agron 13:225–244CrossRefGoogle Scholar
  63. 63.
    Capristo PR, Rizzalli RH, Andrade FH (2007) Ecophysiological yield components of maize hybrids with contrasting maturity. Agron J 99:1111–1118CrossRefGoogle Scholar
  64. 64.
    Thorup-Kristensen K, Magid J, Stoumann Jensen L (2003) Catch crops and green manures as biological tools in nitrogen management in temperate zones. Adv Agron 79:227–302CrossRefGoogle Scholar
  65. 65.
    Qun D, Huizhi L (2013) Seven years of carbon dioxide exchange over a degraded grassland and a cropland with maize ecosystem in a semiarid area of China. Agr Ecosyst Environ 173:1–12CrossRefGoogle Scholar
  66. 66.
    Kristiansen SM, Hansen EM, Jensen LS, Christensen BT (2005) Natural 13C abundance and carbon storage in Danish soils under continuous silage maize. Eur J Agron 22:107–117CrossRefGoogle Scholar
  67. 67.
    Yang JM, Yang JY, Dou S, Yang XM, Hoogenboom G (2013) Simulating the effect of long-term fertilization on maize yield and soil C/N dynamics in northeastern China using DSSAT and CENTURY-based soil model. Nutr Cycl Agroecosyst 95:287–303CrossRefGoogle Scholar
  68. 68.
    Zendonadi dos Santos N, Dieckow J, Bayer C, Molin R, Favaretto N, Pauletti V, Piva JT (2011) Forages, cover crops and related shoot and root additions in no-till rotations to C sequestration in a subtropical Ferralsol. Soil Tillage Res 111:208–218CrossRefGoogle Scholar
  69. 69.
    Wiggans DR, Singer JW, Moore KJ, Lamkey KR (2012) Response of continuous maize with stover removal to living mulches. Agron J 104:917–925CrossRefGoogle Scholar
  70. 70.
    Senbayram M, Chen R, Wienforth B, Herrmann A, Kage H, Mühling KH, Dittert K (2014) Emission of N2O from biogas crop production systems in Northern Germany. Bioenerg Res. doi: 10.1007/s12155-014-9456-2 Google Scholar
  71. 71.
    Techow A (2013) Leistung und ökologische Effekte von Anbausystemen zur Biogas-/Futtererzeugung. Doctoral thesis, Kiel University, GermanyGoogle Scholar
  72. 72.
    Anonymus (2012) Verordnung über die Anwendung von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln nach den Grundsätzen der guten fachlichen Praxis beim Düngen (Düngeverordnung-DüV), Technical report, Bundesministeriums der JustizGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Nikolai Svoboda
    • 1
    • 4
  • Friedhelm Taube
    • 1
  • Christof Kluß
    • 1
  • Babette Wienforth
    • 2
  • Klaus Sieling
    • 2
  • Mario Hasler
    • 3
  • Henning Kage
    • 2
  • Susanne Ohl
    • 5
  • Eberhard Hartung
    • 5
  • Antje Herrmann
    • 1
    Email author
  1. 1.Institute of Crop Science and Plant Breeding, Grass and Forage Science/Organic AgricultureKiel UniversityKielGermany
  2. 2.Institute of Crop Science and Plant Breeding, Agronomy and Crop ScienceKiel UniversityKielGermany
  3. 3.VariationsstatistikKiel UniversityKielGermany
  4. 4.Institute of Land Use SystemsLeibniz Centre for Agricultural Landscape ResearchMünchebergGermany
  5. 5.Institute of Agricultural EngineeringKiel UniversityKielGermany

Personalised recommendations