Skip to main content

Advertisement

Log in

Insufficient Evidence of Jatropha curcas L. Invasiveness: Experimental Observations in Burkina Faso, West Africa

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Biofuel plants such as Jatropha curcas L. have potential to support the livelihoods of rural communities and contribute to sustainable rural development in Africa, if risks and uncertainties are minimized. Yet, recent papers have warned of the risk of biological invasions in such tropical regions as a consequence of the introduction of exotic biofuel crops. We investigated the seed dispersal risk and invasiveness potential of both J. curcas monoculture plantations and live fences into adjacent cultivated and uncultivated land use systems in Sissili province, Burkina Faso. Invasiveness potential was assessed through (i) detecting evidence of natural regeneration in perimeters around J. curcas plantations and live fences, (ii) assessing seed dispersal mechanisms, and (iii) assessing seedling establishment potential through in situ direct seed sowing. Spontaneous regeneration around the plantation perimeters of the three sites was very low. Individual seedling density around J. curcas live fences was less than 0.01 m−2 in all sites. Seventy percent of the seedlings were found close to the live fence and most of them derived from the same year (96 %), which indicates low seed-bank longevity and seedling survival. J. curcas can be dispersed by small mammals and arthropods, particularly rodents and ants. In some sites, such as in Onliassan, high secondary seed dispersal by animals (up to 98 %) was recorded. There were highly significant differences in germination rates between seeds at the soil surface (11 %) and those buried artificially at 1–2-cm depth (64 %). In conclusion, we failed to find convincing evidence of the spreading of J. curcas or any significant impact on the surrounding environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lima M, Pedrozo E, Vilela Junqueira NT (2008) A new paradigm on trade-off biodiesl food: the perennial oleaginous palm tree. simposio.cpac.embrapa.br 1: 1-8

  2. Danielsen F, Beukema H, Burgess ND, Parish F, Brühl CA, Donald PF et al (2009) Biofuel plantations on forested lands: double jeopardy for biodiversity and climate. Conserv Biol 23:348–358

    Article  PubMed  Google Scholar 

  3. International Energy Agency (IEA) (2012) CO2 emissions from fuel combustion. IEA, Paris, 125 pp

    Google Scholar 

  4. International Energy Agency IEA (2006) Key world energy statistics. France, Paris

    Google Scholar 

  5. IUCN (2009) Guidelines on biofuels and invasive species. IUCN, Gland, 20 pp

    Google Scholar 

  6. Santos M, Freitas R, Crespí AL, Hughes SJ, Cabral JA (2011) Predicting trends of invasive plants richness using local socio-economic data: an application in North Portugal. Environ Res 111(7):960–976

    Article  CAS  PubMed  Google Scholar 

  7. Van Wilgen BW, Reyers B, Le Maitre DC, Richardson DM, Schonegevel L (2008) A biome-scale assessment of the impact of invasive alien plants on ecosystem services in South Africa. J Environ Manag 89(4):336–349

    Article  Google Scholar 

  8. Folke C, Coulding J, Berket F (2003) Synthesis: building resilience and adaptive capacity in social-ecological systems. In: Berkes F, Colding J, Folke C (eds). Navigating social-ecological systems: building resilience for complexity and change, Cambridge University Press, Cambridge, UK, p. 352–387

  9. Lake JC, Leishman MR (2004) Invasion success of exotic plants in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores. Biol Conserv 117:215–226

    Article  Google Scholar 

  10. DiTomaso JM, Barney JN, Fox A (2007) Biofuel feedstocks: the risk of future invasions. Council for Agricultural Science and Technology. Commentary; QTA 2007-1

  11. DiTomaso JM, Reaser JK, Dionigi CP, Doering OC, Chilton E, Schardt JD, Barney JN (2010) Biofuel vs bioinvasion: seeding policy priorities. Environ Sci Technol 44:6906–6910

    Article  CAS  PubMed  Google Scholar 

  12. Negussie A, Achten WMJ, Aerts R, Norgrove L, Sinkala T, Hermy M, Muys B (2013) Invasiveness risk of the tropical biofuel crop Jatropha curcas L. into adjacent land use systems: from the rumors to the experimental facts. Glob Chang Biol Bioenergy 5:419–430

    Article  Google Scholar 

  13. Negussie A, Achten WMJ, Norgrove L, Hermy M, Muys B (2013) Invasiveness risk of biofuel crops using Jatropha curcas L. as a model species. Biofuels Bioprod Bioref 7:485–498

    Article  CAS  Google Scholar 

  14. Dawson W, Burslem DFRP, Hulme PE (2009) The suitability of weed risk assessment as a conservation tool to identify invasive plant threats in East African rainforests. Biol Conserv 142:1018–1024

    Article  Google Scholar 

  15. Gordon DR, Tancig KJ, Onderdonk DA, Gantz CA (2011) Assessing the invasive potential of biofuel species proposed for Florida and the United States using the Australian weed risk assessment. Biomass Bioenergy 35:74–79

    Article  Google Scholar 

  16. Landis WG (2004) Ecological risk assessment conceptual model formulation for nonindigenous species. Risk Anal 24:847

    Article  PubMed  Google Scholar 

  17. Andersen MC, Ewald M, Northcott J (2005) Risk analysis and management decisions for weed biological control agents: ecological theory and modeling results. Biol Control 35:330–337

    Article  Google Scholar 

  18. Pheloung PC, Williams PA, Halloy SR (1999) A weed risk assessment model for use as a biosecurity tool for evaluating plant introductions. J Environ Manag 57:239–251

    Article  Google Scholar 

  19. Daehler CC, Denslow JS, Ansari S, Kuo HC (2004) A risk-assessment system for screening out invasive pest plants from Hawaii and other pacific islands. Conserv Biol 18:360–368

    Article  Google Scholar 

  20. Flory SL, Lorentz KA, Doria R, Gordon DR, Sollenberger LE (2012) Experimental approaches for evaluating the invasion risk of biofuel crops. Environ Res Lett 7:045904

    Article  Google Scholar 

  21. Ives AR, Schellhorn NA (2011) Novel pests and technologies: risk assessment in agroecosystems using simple models in the face of uncertainties. Curr Opin Environ Sustain 3:100–104

    Article  Google Scholar 

  22. Sheppard AW, Gillespie I, Hirsch M, Begley C (2011) Biosecurity and sustainability within the growing global bioeconomy. Curr Opin Environ Sustain 3:4–10

    Article  Google Scholar 

  23. Achten W, Verchot L, Franken Y, Mathijs E, Singh V, Aerts R, Muys B (2008) Jatropha bio-diesel production and use. Biomass Bioenergy 32:1063–1084

    Article  CAS  Google Scholar 

  24. Chhetri AB, Tango MS, Budge SM, Watts KC, Islam MR (2008) Non-edible plant oils as new sources for biodiesel production. Int J Mol Sci 9:169–180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Makkar HPS, Becker K (2009) Jatropha curcas, a promising crop for the generation of biodiesel and value-added coproducts. Eur J Lipid Sci Technol 111:773–787

    Article  CAS  Google Scholar 

  26. Corro G, Tellez N, Ayala E, Marinez-Ayala A (2010) Two-step biodiesel production from Jatropha curcas crude oil using SiO2 · HF solid catalyst for FFA esterification step. Fuel 89:2815–2821

    Article  CAS  Google Scholar 

  27. Brittaine R, Lutaladio N (2010) Jatropha: a smallholder bioenergy crop. The potential for pro-poor development. Integrated crop management Vol. 8. FAO, Rome

    Google Scholar 

  28. Nassiré Derra A, Yélémou B, Sanon KB, Hilou A, Millogo/Rasolodimby J, Hien V (2013) Management patterns of Jatropha curcas: impact on the microbial and the mycorrhizial biomasses in different phyto geographic zones of Burkina Faso. Adv Appl Sci Res 4(6):256–267

    Google Scholar 

  29. Ayuk ET (1997) Adoption of agroforestry technology: the case of live hedges in the central plateau of Burkina Faso. Agric Syst 54(2):189–206

    Article  Google Scholar 

  30. Henning RK (2007) Jatropha curcas L. In: van der Vossen HAM, Mkamilo GS (eds) Prota 11(1): medicinal plants/plantes médicinales 1. PROTA, Wageningen

    Google Scholar 

  31. Misra M, Misra AN (2010) Jatropha: the biodiesel plant biology, tissue culture and genetic transformation—a review. Int J Pure Appl Sci Technol 1:11–24

    Google Scholar 

  32. PIER (2008) Pacific Islands Ecosystems at Risk. USA, Institute of Pacific Islands Forestry. http://www.hear.org/pier/index.html. Accessed 28 Mar 2012

  33. Crosti R, Cascone C, Cipollaro S (2010) Use of a weed risk assessment for the Mediterranean region of Central Italy to prevent loss of functionality and biodiversity in agro-ecosystems. Biol Invasions 12:1607–1616

    Article  Google Scholar 

  34. Global Invasive Species Programme (GISP) (2008) Biofuels run the risk of becoming invasive species. http://www.issg.org/pdf/publications/GISP/Resources/BiofuelsReport.pdf. Accessed 19 Apr 2010

  35. Royal Botanic Gardens Sydney (2008) Australia’s virtual herbarium. Sydney, Australia: Royal Botanic Gardens. http://avhtas.tmag.tas.gov.au/. Accessed 2 Apr 2012

  36. Wells MJ, Balsinhas VM, Joffe H, Engelbrecht VM, Harding G, Stirton CH (1986) A catalogue of problem plants in Southern Africa, incorporating the national weed list of South Africa. Memoirs of the Botanical Survey of South Africa No. 53. Botanical Research Institute, Pretoria

    Google Scholar 

  37. USDA-NRCS (2008) The PLANTS Database. Baton Rouge, USA: National Plant Data Center. http://plants.usda.gov. Accessed 9 Mar 2012

  38. Caius JF (1986) The medicinal and poisonous plants of India. Scientific Publishers, Jodhpur

    Google Scholar 

  39. Meyer JY (2000) Preliminary review of the invasive plants in the Pacific islands (SPREP Member Countries). In: Sherley G (ed) Invasive species in the Pacific: a technical review and draft regional strategy. South Pacific Regional Environment Programme, Samoa

    Google Scholar 

  40. Flora of China Editorial Committee (2007) Flora of China Web. Cambridge, USA: Harvard University Herbaria. http://flora.huh.harvard.edu/china. Accessed 28 Mar 2012

  41. Missouri Botanical Garden (2008) Tropicos database. Missouri Botanical Garden, St Louis

    Google Scholar 

  42. Spaan W, Bodnár F, Idoe O, De Graaff J (2004) Implementation of contour vegetation barriers under farmer conditions in Burkina Faso and Mali. Q J Int Agric 43:21–38

    Google Scholar 

  43. Wani SP, Osman M, Emmanuel DS, Sreedevi TK (2006) Improved livelihoods and environmental protection through biodiesel plantations in Asia. Asian Dev Rev 8:11–29

    Google Scholar 

  44. Gordon DR, Onderdonk DA, Fox AM, Stocker RK (2008) Consistent accuracy of the Australian weed risk assessment system across varied geographies. Divers Distrib 14:234–242

    Article  Google Scholar 

  45. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Koppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  46. Seidler TG, Plotkin JB (2006) Seed dispersal and spatial pattern in tropical trees. PLoS Biol 4:2132–2137

    Article  CAS  Google Scholar 

  47. Hannan-Jones M, Csurhes S (2008) Pest Plant Risk Assessment Physic Nut, PR 08-3681. Department of Primary Industries and Fisheries, Queensland Government, Queensland

    Google Scholar 

  48. Sahoo NK, Kumar A, Sharma S, Naik SN (2009) Interaction of Jatropha curcas plantation with ecosystem. Proceedings of international conference on energy and environment March 19-21. Enviroenergy, ISSN: 2070-3740, pp 666–671

  49. Subramanyam K, Rao DM, Devanna N, Aravinda A, Pandurangadu V (2010) Evaluation of genetic diversity among Jatropha curcas L. by RAPD analysis. Indian J Biotechnol 9:283–288

    CAS  Google Scholar 

  50. Wahl N, Hildebrandt T, Moser C, Lüdeke-Freund F, Averdunk K, Bailis R, et al (2012) Insights into Jatropha Projects Worldwide, Key Facts & Figures from a Global Survey. Centre for Sustainability Management (CSM), www.leuphana.de/en/institute/csm, ISBN 978-3-942638-28-9

  51. Davis AD, Cousens RD, Hill J, Mack RN, Simberloff D, Raghu S (2014) Screening bioenergy feedstock crops to mitigate invasion risk. Front Ecol Environ. doi:10.1890/090030

    Google Scholar 

  52. Quinn LD, Barney JN, McCubbins JSN, Bryan Endres AB (2014) Navigating the “noxious” and “invasive” regulatory landscape: suggestions for improved regulation. Bioscience 63(2):124–131

    Google Scholar 

  53. Thompson K, Davis MA (2011) Why research on traits of invasive plants tells us very little. Trends Ecol Evol 26:155–156

    Article  PubMed  Google Scholar 

  54. Negussie A, Achten WMJ, Verboven HAF, Hermy M, Muys B (2014) Floral display and effects of natural and artificial pollination on fruiting and seed yield of the tropical biofuel crop Jatropha curcas L. Glob Chang Biol Bioenergy 6:210–218

    Article  Google Scholar 

  55. Engeman RM, Sugihara RT, Pank LF, Dusenberry WE (1994) A composition of plotless density estimators using Monte-Carlo simulation. Ecology 75:1769–1779

    Article  Google Scholar 

  56. Aerts R, Maes WH, November E, Negussie A, Hermy M, Muys B (2006) Restoring dry Afromontane forest using bird and nurse plant effects: direct sowing of Olea europaea ssp. cuspidata seeds. For Ecol Manag 230:23–31

    Article  Google Scholar 

  57. Schmidt LH (2007) Tropical forest seeds. Springer, New York, 409 p

    Book  Google Scholar 

  58. Jepsen JK, Henning RK and Nyathi B (2012) Generative propagation of Jatropha curcas L. on Kalahari Sand. http://www.jatropha.pro/generative%20propagation.htm. Accessed 23 Feb 2012

  59. Ye M, Li C, Francis G, Makkar HPS (2009) Current situation and prospects of Jatropha curcas as a multipurpose tree in China. Agrofor Syst 76:487–497

    Article  Google Scholar 

  60. Deng ZJ, Cheng HY, Song SQ (2005) Studies on Jatropha curcasseed. Acta Bot Yunnanica 27:605–612

    CAS  Google Scholar 

  61. Space JC, Flynn T (2001) Report to the Kingdom of Tonga on invasive plant species of environmental concern. USDA Forest Service, Pacific Southwest Research Station, Institute of Pacific Islands Forestry

  62. Quinn LD, Gordon DR, Glaser A, Deah Lieurance S, Flory L (2014) Bioenergy feedstocks at low risk for invasion in the USA: a “white list” approach. Bioenerg Res. doi:10.1007/s12155-014-9503-z

    Google Scholar 

  63. Makkar HPS, Becker K, Sporer F, Wink M (1997) Studies on nutritive potential and toxic constituents of different provenances of Jatropha curcas. J Agric Food Chem 45:3152–3157

    Article  CAS  Google Scholar 

  64. Li CY, Devappa RK, Liu JX, Lv JM, Makkar HPS, Becker K (2010) Toxicity of Jatropha curcas phorbol esters in mice. Food Chem Toxicol 48:620–625

    Article  CAS  PubMed  Google Scholar 

  65. Greenberg CH, Smith LM, Levey DJ (2011) Fruit fate, seed germination and growth of an invasive vine—an experimental test of ‘sit and wait’ strategy. Biol Invasions 3:363–372

    Article  Google Scholar 

  66. Heller J (1992) Studies on genotypic characteristics and propagation and cultivation methods for physic nuts (Jatropha curcas L.). Kovac, Hamburg

  67. Singh NS (2008) Anti termite activity of Jatropha curcas Linn. biochemicals. J Appl Sci Environ Manag 12:67–69

    Google Scholar 

  68. Jimu L, Nyakudya IW (2009) Establishment and early field performance of Jatropha curcas L at Bindura. Sustain Dev 10:445–469

    Google Scholar 

  69. Ramkat R, Calari A, Maghuly F, Laimer M (2011) Occurrence of African cassava mosaic virus (ACMV) and East African cassava mosaic virus–Uganda (EACMV-UG) in Jatropha curcas. BMC Proc 5(Suppl 7):P93. doi:10.1186/1753-6561-5-S7-P93

    Article  PubMed Central  Google Scholar 

  70. Rao CS, Kumari MP, Wani SP, Marimuthu S (2011) Occurrence of black rot in Jatropha curcas L. plantations in India caused by Botryosphaeria dothidea. Curr Sci 100:1547–1549

    Google Scholar 

  71. Prabhakar M, Prasad YG, Rao GR, Venkateswarlu B (2012) A new record of longicorn beetle, Acanthophorus rugiceps, from India as a root borer on Physic nut, Jatropha curcas, with a description of life stages, biology, and seasonal dynamics. J Insect Sci 12:141

  72. Negussie A (2013) Regeneration ecology of Jatropha curcas L. in Africa: implications for its biofuel production and invasiveness. Doctoral thesis, Faculty of Bioscience Engineering, KU Leuven, Belgium. 166 pp

  73. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA et al (2011) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  74. Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the ERA ARD Jatrophability project and supported by KU Leuven, VLIR-UOS, and Fondation Fasobiocarburant, Burkina Faso. Lindsey Norgrove is supported by the Swiss National Science Foundation (SNSF) through a Marie Heim-Vögtlin research fellowship. World Agroforestry Center (ICRAF), Addis Ababa, Ethiopia office is highly acknowledged for hosting Aklilu Negussie as temporary staff during the preparation of the manuscript. The authors would like to thank Fondation Fasobiocarburant staffs in Léo. The authors also thank ADECIA for their financial assistance through the Fasobiocarburant Foundation’. Special thanks go to Onliassan, Benaverou, Tabou, Yalle, Metio, Kayero, Zoro, Léo, and Neboun farmers and agricultural extension workers. We would like to thank two anonymous reviewers for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aklilu Negussie or Bart Muys.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negussie, A., Nacro, S., Achten, W.M.J. et al. Insufficient Evidence of Jatropha curcas L. Invasiveness: Experimental Observations in Burkina Faso, West Africa. Bioenerg. Res. 8, 570–580 (2015). https://doi.org/10.1007/s12155-014-9544-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9544-3

Keywords

Navigation