BioEnergy Research

, Volume 8, Issue 2, pp 482–501 | Cite as

Untapped Potential: Opportunities and Challenges for Sustainable Bioenergy Production from Marginal Lands in the Northeast USA

  • Cathelijne R. StoofEmail author
  • Brian K. RichardsEmail author
  • Peter B. Woodbury
  • Eric S. Fabio
  • Alice R. Brumbach
  • Jerry Cherney
  • Srabani Das
  • Larry Geohring
  • Julie Hansen
  • Josh Hornesky
  • Hilary Mayton
  • Cedric Mason
  • Gerry Ruestow
  • Lawrence B. Smart
  • Timothy A. Volk
  • Tammo S. Steenhuis


Over two million hectares of marginal land in the Northeast USA no longer used for agriculture may be suitable and available for production of second-generation cellulosic bioenergy crops, offering the potential for increased regional bioenergy production without competing with food production on prime farmland. Current yields of perennial bioenergy grasses and short-rotation woody crops range from 2.3 to 17.4 and 4.5 to 15.5 Mg/ha, respectively, and there is great potential for increased yields. Regional advantages for bioenergy development include abundant water resources, close proximity between production and markets, and compatibility of bioenergy cropping systems with existing agriculture. As New York and New England (a subset of the Northeast region) account for ~85 % of the nation’s heating oil consumption, production of bioheat, biopower, and combined heat and power could substantially reduce the region’s dependence on imported petroleum. While numerous grassroots efforts are underway in the region across supply chains, bioenergy development faces several challenges and unknowns in terms of environmental impact, production, yields, socioeconomics, and policy. We explore the opportunities for second-generation bioenergy production on the unused marginal lands of the Northeast USA and discuss the challenges to be addressed to promote sustainable bioenergy production on the region’s underutilized marginal land base.


Second-generation bioenergy feedstocks Marginal land Perennial grass Short-rotation woody crops Impacts Production Policy Northeast USA 



This paper arose from a collaborative multidisciplinary seminar series “Untapped Potential: Sustainable Bioenergy Production on Marginal Lands of New York and the Northeast” held at Cornell University in 2012, 2013, and 2014. The seminar brought together speakers from inside and outside of academia, focusing on the region’s marginal land bioenergy potential. We thank all seminar participants for discussion, and Ellen Demey and Valerie Podolec for their helpful comments. This work was supported in part by the USDA-NIFA through Sustainable Bioenergy Grant No. 2010-03869, AFRI Competitive Grant No. 2012-68005-19703, and Cornell University Agricultural Experiment Station federal formula funds Project No. 125-7832; as well as by the USDOE Energy Bioenergy Technologies Office through the North Central Regional Sun Grant Center at South Dakota State University (Award No. DE-FC36-05GO85041). Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the USDA, NIFA, USDA-NRCS, USDA-FSA, or the New York Bioenergy Association.


  1. 1.
    Gopalakrishnan G, Negri MC, Wang M, Wu M, Snyder SW, LaFreniere L (2009) Biofuels, land, and water: a systems approach to sustainability. Environ Sci & Technol 43(15):6094–6100. doi: 10.1021/es900801u Google Scholar
  2. 2.
    Valentine J, Clifton-Brown J, Hastings A, Robson P, Allison G, Smith P (2012) Food vs. fuel: the use of land for lignocellulosic ‘next generation’ energy crops that minimize competition with primary food production. GCB Bioenergy 4(1):1–19. doi: 10.1111/j.1757-1707.2011.01111.x Google Scholar
  3. 3.
    Campbell JE, Lobell DB, Genova RC, Field CB (2008) The global potential of bioenergy on abandoned agriculture lands. Environ Sci & Technol 42(15):5791–5794. doi: 10.1021/es800052w Google Scholar
  4. 4.
    McLaughlin SB, Adams Kszos L (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28(6):515–535Google Scholar
  5. 5.
    Varvel GE, Vogel KP, Mitchell RB, Follett R, Kimble J (2008) Comparison of corn and switchgrass on marginal soils for bioenergy. Biomass Bioenergy 32(1):18–21Google Scholar
  6. 6.
    USDOE (2011) U.S. billion-ton update: biomass supply for a bioenergy and bioproducts industry, ORNL/TM-2011/224. R.D. Perlack and B.J. Stokes (Leads), U.S. Department of Energy (DOE), Oak Ridge National Laboratory, Oak Ridge, TN, USA,
  7. 7.
    Gelfand I, Sahajpal R, Zhang X, Izaurralde RC, Gross KL, Robertson GP (2013) Sustainable bioenergy production from marginal lands in the US Midwest. Nature. doi: 10.1038/nature11811 Google Scholar
  8. 8.
    Nijsen M, Smeets E, Stehfest E, van Vuuren DP (2012) An evaluation of the global potential of bioenergy production on degraded lands. GCB Bioenergy 4(2):130–147. doi: 10.1111/j.1757-1707.2011.01121.x Google Scholar
  9. 9.
    U.S. Census Bureau (2010) 2010 Census of population and housing, summary population and housing characteristics, CPH-1–1, Table 8 Land area and population density. U.S. Government Printing Office, WashingtonGoogle Scholar
  10. 10.
    USEIA (2013) Residential Energy Consumption Survey (RECS), Table HC1.7 Fuels used and end uses in U.S. homes, by Census Region, 2009. US Energy Information Administration,, accessed 11 March 2014
  11. 11.
    USEIA (2014) Heating oil explained—use of heating oil US Energy Information Administration,, accessed 11 March 2014
  12. 12.
    BTEC (2010) Heating the Northeast with renewable biomass: a bold vision for 2025, Biomass Thermal Energy Council, Washington DC, USA; Alliance for Green Heat, Takoma Park MD, USA; Maine Pellet Fuels Association, Portland ME, USA; New York Biomass Energy Alliance, Syracuse NY, USA; Pellet Fuels Institute, Arlington VA, USA
  13. 13.
    Cuomo AM (2014) Launch renewable heat NY: the low-emission biomass heating initiative. Building on Success, 2014 State of the State,, pp 66–69
  14. 14.
    BERC (2013) An overview of biomass thermal energy policy opportunities in the northern forest region. Biomass Energy Resource Center,
  15. 15.
    NYSERDA (2012) Patterns and trends New York State Energy Profiles: 1996–2010. New York State Energy Research and Development AuthorityGoogle Scholar
  16. 16.
    NYSERDA (2010) Renewable fuels roadmap and sustainable biomass feedstock supply for New York. . New York State Energy Research and Development Authority Report 10–05. April, 2010.,
  17. 17.
    Wilson TO, McNeal FM, Spatari SG, Abler D, Adler PR (2011) Densified biomass can cost-effectively mitigate greenhouse gas emissions and address energy security in thermal applications. Environ Sci & Technol 46(2):1270–1277Google Scholar
  18. 18.
    Blanco-Canqui H (2010) Energy crops and their implications on soil and environment. Agron J 102(2):403–419Google Scholar
  19. 19.
    Bonin C, Lal R (2012) Chapter One—agronomic and ecological implications of biofuels. In: Donald LS (ed) Advances in agronomy, vol 117. Academic, New York, pp 1–50. doi:  10.1016/B978-0-12-394278-4.00001-5
  20. 20.
    James P, Howes P (2006) Regulation of energy from solid biomass plants, Report ED51518. AEA Technology,
  21. 21.
    EU (2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources. Off J Eur Union L140:16–62Google Scholar
  22. 22.
    FAO (2007) A review of the current state of bionergy development in G8 + 5 countries. Global Bioenergy Partnership (GBEP), Food and Agriculture Organization of the United Nations (FAO)
  23. 23.
    Bracmort K (2012) Biomass: comparison of definitions in legislation through the 112th Congress, Report R40529. Congressional Research Service,
  24. 24.
    Peterson GM, Galbraith J (1932) The concept of marginal land. J Farm Econ 14(2):295–310Google Scholar
  25. 25.
    Dauber J, Brown C, Fernando AL, Finnan J, Krasuska E, Ponitka J, Styles D, Thrän D, Van Groenigen KJ, Weih M (2012) Bioenergy from “surplus” land: environmental and socio-economic implications. BioRisk: Biodiversity & Ecosystem Risk Assessment 7Google Scholar
  26. 26.
    Richards BK, Stoof CR, Cary IJ, Woodbury PB (2014) Reporting on marginal lands for bioenergy feedstock production: a modest proposal. BioEnergy Res:1–3. doi:  10.1007/s12155-014-9408-x
  27. 27.
    Shortall OK (2013) “Marginal land” for energy crops: exploring definitions and embedded assumptions. Energy Policy 62:19–27. doi: 10.1016/j.enpol.2013.07.048 Google Scholar
  28. 28.
    Arguez A, Durre I, Applequist S, Vose RS, Squires MF, Yin X, Heim RR Jr, Owen TW (2012) NOAA's 1981–2010 US climate normals: an overview. Bull Am Meteorol Soc 93(11):1687–1697Google Scholar
  29. 29.
    Conklin H (1966) The new forests of New York. Land Econ 42(2):202–203Google Scholar
  30. 30.
    Homer C, Dewitz J, Fry J, Coan M, Hossain N, Larson C, Herold N, McKerrow A, VanDriel JN, Wickham J (2007) Completion of the 2001 National Land Cover Database for the Counterminous United States. Photogramm Eng Remote Sens 73(4):337Google Scholar
  31. 31.
    National Agricultural Statistics Service (2009) 2007 Census of Agriculture. United States Department of Agriculture, National Agricultural Statistical Service.
  32. 32.
    Woodbury PB, Volk T, Germain RH, Castellano P, Buchholz T, Wightman J, Melkonian J, Mayton H, Ahmed Z, Peters C (2010) Analysis of sustainable feedstock production potential in New York State Appendix E. In: Wojnar Z (ed) Renewable fuels roadmap and sustainable biomass feedstock supply for New York. . New York State Energy Research and Development Authority Report 10–05. April, 2010,, pp Ei-E103
  33. 33.
    Steenhuis TS, Winchell M, Rossing J, Zollweg JA, Walter MF (1995) SCS runoff equation revisited for variable-source runoff areas. J Irrig Drain Eng 121(3):234–238Google Scholar
  34. 34.
    Frankenberger JR, Brooks ES, Walter MT, Walter MF, Steenhuis TS (1999) A GIS-based variable source area hydrology model. Hydrol Process 13(6):805–822Google Scholar
  35. 35.
    Walter MT, Walter MF, Brooks ES, Steenhuis TS, Boll J, Weiler K (2000) Hydrologically sensitive areas: variable source area hydrology implications for water quality risk assessment. J Soil Water Conserv 55(3):277–284Google Scholar
  36. 36.
    Earl R (1997) Prediction of trafficability and workability from soil moisture deficit. Soil Tillage Res 40(3):155–168Google Scholar
  37. 37.
    Bockus W, Shroyer J (1998) The impact of reduced tillage on soilborne plant pathogens. Annu Rev Phytopathol 36(1):485–500PubMedGoogle Scholar
  38. 38.
    Rowe RL, Street NR, Taylor G (2009) Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK. Renew Sust Energ Rev 13(1):271–290Google Scholar
  39. 39.
    Volk TA, Verwijst T, Tharakan PJ, Abrahamson LP, White EH (2004) Growing fuel: a sustainability assessment of willow biomass crops. Front Ecol Environ 2(8):411–418Google Scholar
  40. 40.
    Williams PRD, Inman D, Aden A, Heath GA (2009) Environmental and sustainability factors associated with next-generation biofuels in the U.S.: what do we really know? Environ Sci & Technol 43(13):4763–4775. doi: 10.1021/es900250d Google Scholar
  41. 41.
    Mitchell R, Vogel KP, Sarath G (2008) Managing and enhancing switchgrass as a bioenergy feedstock. Biofuels Bioprod Biorefin 2(6):530–539. doi: 10.1002/bbb.106 Google Scholar
  42. 42.
    Sanderson MA, Adler PR (2008) Perennial forages as second generation bioenergy crops. Int J Mol Sci 9(5):768–788PubMedPubMedCentralGoogle Scholar
  43. 43.
    McLaughlin S, Walsh M (1998) Evaluating environmental consequences of producing herbaceous crops for bioenergy. Biomass Bioenergy 14(4):317–324Google Scholar
  44. 44.
    Kort J, Collins M, Ditsch D (1998) A review of soil erosion potential associated with biomass crops. Biomass Bioenergy 14(4):351–359Google Scholar
  45. 45.
    Keshwani DR, Cheng JJ (2009) Switchgrass for bioethanol and other value-added applications: a review. Bioresour Technol 100(4):1515–1523PubMedGoogle Scholar
  46. 46.
    Schnabel RR, Franzluebbers AJ, Stout WL, Sanderson MA, Stuedemann JA (2001) The effects of pasture management practices. In: Follett RF, Kimble JM, Lal R (eds) The potential of U.S. grazing lands to sequester carbon and mitigate the greenhouse effect. CRC, Boca Raton, pp 291–322Google Scholar
  47. 47.
    Hansen EM, Christensen BT, Jensen L, Kristensen K (2004) Carbon sequestration in soil beneath long-term Miscanthus plantations as determined by 13C abundance. Biomass Bioenergy 26(2):97–105Google Scholar
  48. 48.
    Stockmann U, Adams MA, Crawford JW, Field DJ, Henakaarchchi N, Jenkins M, Minasny B, McBratney AB, Courcelles VDRD, Singh K, Wheeler I, Abbott L, Angers DA, Baldock J, Bird M, Brookes PC, Chenu C, Jastrow JD, Lal R, Lehmann J, O’Donnell AG, Parton WJ, Whitehead D, Zimmermann M (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agr, Ecosyst & Environ 164:80–99. doi: 10.1016/j.agee.2012.10.001 Google Scholar
  49. 49.
    Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319(5867):1235–1238. doi: 10.1126/science.1152747 PubMedGoogle Scholar
  50. 50.
    Anderson-Teixeira KJ, Davis SC, Masters MD, Delucia EH (2009) Changes in soil organic carbon under biofuel crops. Global Chang Biol Bioenergy 1(1):75–96Google Scholar
  51. 51.
    Kludze H, Deen B, Weersink A, van Acker R, Janovicek K, De Laporte A (2013) Impact of land classification on potential warm season grass biomass production in Ontario, Canada. Can J Plant Sci 93(2):249–260Google Scholar
  52. 52.
    Stavi I, Lal R, Owens LB (2011) On-farm effects of no-till versus occasional tillage on soil quality and crop yields in eastern Ohio. Agronomy Sust Developm 31(3):475–482. doi: 10.1007/s13593-011-0006-4 Google Scholar
  53. 53.
    Stehfest E, Bouwman L (2006) N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutr Cycl Agroecosyst 74(3):207–228. doi: 10.1007/s10705-006-9000-7 Google Scholar
  54. 54.
    Bessou C, Ferchaud F, Gabrielle B, Mary B (2011) Biofuels, greenhouse gases and climate change. Sustainable Agriculture Volume 2. Springer, Dordrecht, pp 365–468Google Scholar
  55. 55.
    Djomo SN, Kasmioui OE, Ceulemans R (2011) Energy and greenhouse gas balance of bioenergy production from poplar and willow: a review. GCB Bioenergy 3(3):181–197. doi: 10.1111/j.1757-1707.2010.01073.x Google Scholar
  56. 56.
    Molodovskaya M, Singurindy O, Richards BK, Warland J, Johnson MS, Steenhuis TS (2012) Temporal variability of nitrous oxide from fertilized croplands: hot moment analysis. Soil Sci Soc Am J 76(5):1728–1740Google Scholar
  57. 57.
    Fick G, Pfeifer R, Lathwell D (1994) Production patterns of perennial herbaceous biomass crops in the Great Lakes Region. Energy Sources 16(3):333–348Google Scholar
  58. 58.
    Van Groenigen JW, Velthof GL, Oenema O, Van Groenigen KJ, Van Kessel C (2010) Towards an agronomic assessment of N2O emissions: a case study for arable crops. Eur J Soil Sci 61(6):903–913. doi: 10.1111/j.1365-2389.2009.01217.x Google Scholar
  59. 59.
    Vogel KP (1996) Energy production from forages (or American agriculture—back to the future). J Soil Water Conserv 51(2):137–139Google Scholar
  60. 60.
    Rothbart P, Capel S (2006) Chapter 3. Maintaining and restoring grasslands. In: Oehler JD, Covell DR, S.Capel, Long B (eds) Managing grasslands, shrublands and young forests for wildlife, a guide for the Northeast. Northeast Upland Habitat Technical Committee, Massachusetts Division of Fisheries & Wildlife,, pp 14–27
  61. 61.
    Salon P, Miller C (2012) A guide to: conservation plantings on critical areas for the Northeast. USDA, NRCS, Big Flats Plant Materials Center, Corning, NY, USA,
  62. 62.
    Parrish DJ, Fike JH (2005) The biology and agronomy of switchgrass for biofuels. Crit Rev Plant Sci 24(5–6):423–459. doi: 10.1080/07352680500316433 Google Scholar
  63. 63.
    Casler M, Vogel K, Taliaferro C, Wynia R (2004) Latitudinal adaptation of switchgrass populations. Crop Sci 44(1):293–303Google Scholar
  64. 64.
    Casler MD, Vogel KP (2014) Selection for biomass yield in upland, lowland, and hybrid switchgrass. Crop Sci 54(2):626–636Google Scholar
  65. 65.
    Cortese LM, Bonos SA (2013) Bioenergy traits of ten switchgrass populations grown in the Northeastern/Mid-Atlantic USA. BioEnergy Res 6(2):580–590. doi: 10.1007/s12155-012-9271-6 Google Scholar
  66. 66.
    Mayton H, Adler P, Casler M, Ernst C, Boe A, Bonos S (2013) Switchgrass and biodiversity mixture yields on prime and marginal land in the Northeast switchgrass II, Sep. 3–6, 2013, Madison, WI.Google Scholar
  67. 67.
    Vogel K, Mitchell R, Casler M, Sarath G (2014) Registration of ‘Liberty’ switchgrass. Journal of Plant Registrations. doi: 10.3198/jpr2013.12.0076crcGoogle Scholar
  68. 68.
    Weimer PJ, Springer TL (2007) Fermentability of eastern gamagrass, big bluestem and sand bluestem grown across a wide variety of environments. Bioresour Technol 98(8):1615–1621PubMedGoogle Scholar
  69. 69.
    Tubeileh A, Rennie TJ, Kerr A, Saita AA, Patanè C (2014) Biomass production by warm-season grasses as affected by nitrogen application in Ontario. Agron J 106(2):416–422. doi: 10.2134/agronj2013.0379 Google Scholar
  70. 70.
    Salon P, Dickerson J, Burgdorf D, Bush T, Miller C, Wark B, Maher R, Poole B (2011) Vegetating with native grasses in Northeastern North America. NRCS,
  71. 71.
    Mann JJ, Barney JN, Kyser GB, Di Tomaso JM (2013) Miscanthus × giganteus and Arundo donax shoot and rhizome tolerance of extreme moisture stress. GCB Bioenergy 5(6):693–700. doi: 10.1111/gcbb.12039 Google Scholar
  72. 72.
    Naidu SL, Szarejko JM, Ramig KM, Portis AR, Long SP (2005) The exceptional low temperature tolerance of C4 photosynthesis in Miscanthus x giganteus corresponds to a lower activation energy of Rubisco. Plant Biology Annual Meeting, 16–20 Jul 2005, Seattle, WA, USA. Paper No. 262.
  73. 73.
    Lee DK, Parrish AS, Voigt TB (2014) Switchgrass and giant miscanthus agronomy. In: Shastri Y, Hansen A, Rodríguez L, Ting KC (eds) Engineering and science of biomass feedstock production and provision. Springer, New York, NY, USA, pp 37–59Google Scholar
  74. 74.
    Heaton EA, Boersma N, Caveny JD, Voigt TB, Dohleman FG (2012) Miscanthus (Miscanthus x giganteus) for biofuel production. Extension- America's Research-based Learning Network,
  75. 75.
    Heaton EA, Long SP, Voigt TB, Jones MB, Clifton-Brown J (2004) Miscanthus for renewable energy generation: European Union experience and projections for Illinois. Mitig Adapt Strateg Glob Chang 9(4):433–451Google Scholar
  76. 76.
    Miguez FE, Maughan M, Bollero GA, Long SP (2012) Modeling spatial and dynamic variation in growth, yield, and yield stability of the bioenergy crops Miscanthus × giganteus and Panicum virgatum across the conterminous United States. GCB Bioenergy 4(5):509–520. doi: 10.1111/j.1757-1707.2011.01150.x Google Scholar
  77. 77.
    Wrobel C, Coulman BE, Smith DL (2008) The potential use of reed canarygrass (Phalaris arundinacea L.) as a biofuel crop. Acta Agriculturae Scandinavica, Section B - Soil & Plant Sci 59(1):1–18. doi: 10.1080/09064710801920230 Google Scholar
  78. 78.
    Rice JS, Pinkerton BW (1993) Reed canarygrass survival under cyclic inundation. J Soil Water Conserv 48(2):132–135Google Scholar
  79. 79.
    Hallam A, Anderson IC, Buxton DR (2001) Comparative economic analysis of perennial, annual, and intercrops for biomass production. Biomass Bioenergy 21(6):407–424Google Scholar
  80. 80.
    Douglas J, Lamunyon J, Wynia R, Salon P (2009) Planting and managing switchgrass as a biomass energy crop. USDA-NRCS, Washington, DC, USA,
  81. 81.
    Jung JY, Lal R (2011) Impacts of nitrogen fertilization on biomass production of switchgrass (Panicum virgatum L.) and changes in soil organic carbon in Ohio. Geoderma 166(1):145–152Google Scholar
  82. 82.
    Richards BK, Stoof CR, Mason C, Crawford RV, Das S, Hansen JL, Mayton HS, Crawford JL, Steenhuis TS, Walter MT, Viands DR (2013) Carbon sequestration and gaseous emissions in perennial grass bioenergy cropping systems in the Northeastern US, Proceedings of the AAIC Meeting USDA-NIFA session on Carbon Sequestration and Greenhouse Gas Emissions from Bioenergy Crops, Washington, DC, USA, 14 Oct 2013Google Scholar
  83. 83.
    Owens V, Viands D, Mayton H, Fike J, Farris R, Heaton E, Bransby D, Hong C (2013) Nitrogen use in switchgrass grown for bioenergy across the USA. Biomass Bioenergy 58:286–293Google Scholar
  84. 84.
    Crouch JA, Beirn LA, Cortese LM, Bonos SA, Clarke BB (2009) Anthracnose disease of switchgrass caused by the novel fungal species Colletotrichum navitas Mycol Res 113(12):1411–1421PubMedGoogle Scholar
  85. 85.
    Waxman K, Bergstrom G (2011) First report of anthracnose caused by Colletotrichum navitas on switchgrass in New York. Plant Dis 95(8):1032–1032Google Scholar
  86. 86.
    Waxman K, Bergstrom G (2011) First report of a leaf spot caused by Bipolaris oryzae on switchgrass in New York. Plant Dis 95(9):1192–1192Google Scholar
  87. 87.
    Volk TA, Abrahamson LP, Nowak CA, Smart LB, Tharakan PJ, White EH (2006) The development of short-rotation willow in the northeastern United States for bioenergy and bioproducts, agroforestry and phytoremediation. Biomass and Bioenergy 30(8–9):715–727. doi: 10.1016/j.biombioe.2006.03.001 Google Scholar
  88. 88.
    Royle DJ, Ostry ME (1995) Disease and pest control in the bioenergy crops poplar and willow. Biomass and Bioenergy 9(1–5):69–79. doi: 10.1016/0961-9534(95)00080-1 Google Scholar
  89. 89.
    Tharakan PJ, Volk TA, Nowak CA, Abrahamson LP (2005) Morphological traits of 30 willow clones and their relationship to biomass production. Can J For Res 35(2):421–431Google Scholar
  90. 90.
    Smart LB, Cameron KD (2008) Genetic improvement of willow (Salix spp.) as a dedicated bioenergy crop. In: Vermerris WE (ed) Genetic improvement of bioenergy crops. Springer Science, New York, NY, pp 347–376Google Scholar
  91. 91.
    Smart LB, Volk TA, Lin J, Kopp RF, Phillips IS, Cameron KD, White EH, Abrahamson LP (2005) Genetic improvement of shrub willow (Salix spp.) crops for bioenergy and environmental applications in the United States. Unasylva (English ed) 56(221):51–55Google Scholar
  92. 92.
    Smart LB, Cameron KD (2012) Shrub willow. In: Kole C, Joshi S, Shonnard D (eds) Handbook of bioenergy crop plants. Taylor and Francis Group, Boca Raton, FL, pp 687–708Google Scholar
  93. 93.
    Volk TA, Abrahamson LP, Cameron KD, Castellano P, Corbin T, Fabio E, Johnson G, Kuzovkina-Eischen Y, Labrecque M, Miller R, Sidders D, Smart LB, Staver K, Stanosz GR, Van Rees K (2011) Yields of willow biomass crops across a range of sites in North America. Asp Appl Biol 112:67–74Google Scholar
  94. 94.
    Serapiglia MJ, Gouker FE, Smart LB (2014) Early selection of novel triploid hybrids of shrub willow with improved biomass yield relative to diploids. BMC Plant Biol 14(1):74PubMedPubMedCentralGoogle Scholar
  95. 95.
    Fillion M, Brisson J, Teodorescu TI, Sauve S, Labrecque M (2009) Performance of Salix viminalis and Populus nigra x Populus maximowiczii in short rotation intensive culture under high irrigation. Biomass & Bioenergy 33(9):1271–1277. doi: 10.1016/j.biombioe.2009.05.011 Google Scholar
  96. 96.
    Guidi W, Labrecque M (2010) Effects of high water supply on growth, water use, and nutrient allocation in willow and poplar grown in a 1-year pot trial. Water Air Soil Pollut 207(1–4):85–101. doi: 10.1007/s11270-009-0121-x Google Scholar
  97. 97.
    Serapiglia MJ, Cameron KD, Stipanovic AJ, Abrahamson LP, Volk TA, Smart LB (2013) Yield and woody biomass traits of novel shrub willow hybrids at two contrasting sites. BioEnergy Res 6:533–546. doi: 10.1007/s12155-012-9272-5 Google Scholar
  98. 98.
    Hanley SJ, Karp A (2013) Genetic strategies for dissecting complex traits in biomass willows (Salix spp.). Tree physiology: tpt089Google Scholar
  99. 99.
    McCracken AR, Walsh L, Moore PJ, Lynch M, Cowan P, Dawson M, Watson S (2011) Yield of willow (Salix spp.) grown in short rotation coppice mixtures in a long-term trial. Ann Appl Biol 159(2):229–243. doi: 10.1111/j.1744-7348.2011.00488.x Google Scholar
  100. 100.
    Weih M, Nordh N-E (2002) Characterising willows for biomass and phytoremediation: growth, nitrogen and water use of 14 willow clones under different irrigation and fertilisation regimes. Biomass Bioenergy 23(6):397–413Google Scholar
  101. 101.
    Buchholz T, Volk TA (2011) Improving the profitability of willow crops-identifying opportunities with a crop budget model. BioEnergy Res 4(2):85–95. doi: 10.1007/s12155-010-9103-5 Google Scholar
  102. 102.
    Heilman P, Norby RJ (1998) Nutrient cycling and fertility management in temperate short rotation forest systems. Biomass and Bioenergy 14(4):361–370. doi: 10.1016/S0961-9534(97)10072-1 Google Scholar
  103. 103.
    Jug A, Makeschin F, Rehfuess KE, Hofmann-Schielle C (1999) Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. III Soil ecological effects Forest Ecology and Management 121(1–2):85–99. doi: 10.1016/S0378-1127(98)00558-1 Google Scholar
  104. 104.
    Ens J, Farrell RE, Belanger N (2013) Early effects of afforestation with willow (Salix purpurea, ‘Hotel’) on soil carbon and nutrient availability. Forests 4(1):137–154. doi: 10.3390/f4010137 Google Scholar
  105. 105.
    Adegbidi HG, Volk TA, White EH, Abrahamson LP, Briggs RD, Bickelhaupt DH (2001) Biomass and nutrient removal by willow clones in experimental bioenergy plantations in New York State. Biomass Bioenergy 20(6):399–411. doi: 10.1016/s0961-9534(01)00009-5 Google Scholar
  106. 106.
    Jug A, Hofmann-Schielle C, Makeschin F, Rehfuess KE (1999) Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. II Nutritional status and bioelement export by harvested shoot axes. For Ecol and Manag 121(1–2):67–83. doi: 10.1016/s0378-1127(98)00557-x Google Scholar
  107. 107.
    Mitchell CP, Stevens EA, Watters MP (1999) Short-rotation forestry—operations, productivity and costs based on experience gained in the UK. For Ecol and Manag 121(1–2):123–136. doi: 10.1016/S0378-1127(98)00561-1 Google Scholar
  108. 108.
    Hangs RD, Schoenau JJ, Van Rees KCJ, Knight JD (2012) The effect of irrigation on nitrogen uptake and use efficiency of two willow (Salix spp.) biomass energy varieties. Can J Plant Sci 92(3):563–575. doi: 10.4141/cjps2011-245 Google Scholar
  109. 109.
    Caputo J, Balogh S, Volk T, Johnson L, Puettmann M, Lippke B, Oneil E (2014) Incorporating uncertainty into a life cycle assessment (LCA) model of short-rotation willow biomass (Salix spp.) crops. BioEnergy 7(1):48–59. doi: 10.1007/s12155-013-9347-y Google Scholar
  110. 110.
    Baxter LL, Miles TR, Miles TR Jr, Jenkins BM, Milne T, Dayton D, Bryers RW, Oden LL (1998) The behavior of inorganic material in biomass-fired power boilers: field and laboratory experiences. Fuel Process Technol 54(1):47–78Google Scholar
  111. 111.
    Cherney JH, Cherney DJR, Bruulsema TW (1998) Potassium management. In: Cherney DJR, Cherney JH (eds) Grass for dairy cattle. CABI, New York, NY, pp 137–160Google Scholar
  112. 112.
    Samson R, Mani S, Boddey R, Sokhansanj S, Quesada D, Urquiaga S, Reis V, Ho Lem C (2005) The potential of C4 perennial grasses for developing a global BIOHEAT industry. BPTS 24(5–6):461–495Google Scholar
  113. 113.
    Hadders G, Olsson R (1997) Harvest of grass for combustion in late summer and in spring. Biomass Bioenergy 12(3):171–175Google Scholar
  114. 114.
    Tonn B, Thumm U, Lewandowski I, Claupein W (2012) Leaching of biomass from semi-natural grasslands—effects on chemical composition and ash high-temperature behaviour. Biomass Bioenergy 36:390–403Google Scholar
  115. 115.
    Tumuluru JS, Wright CT, Hess JR, Kenney KL (2011) A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels Bioprod Biorefin 5(6):683–707Google Scholar
  116. 116.
    Chandrasekaran SR, Hopke PK, Newtown M, Hurlbut A (2013) Residential-scale biomass boiler emissions and efficiency characterization for several fuels. Energy Fuel 27(8):4840–4849Google Scholar
  117. 117.
    CEN (2012) EN 14961-6, Solid biofuels—fuel specifications and classes—Part 6: Non-woody pellets for non-industrial use. European Committee for Standardization, BrusselsGoogle Scholar
  118. 118.
    Cherney JH, Verma VK (2013) Grass pellet Quality Index: a tool to evaluate suitability of grass pellets for small scale combustion systems. Applied Energy 103:679–684. doi: 10.1016/j.apenergy.2012.10.050 Google Scholar
  119. 119.
    Schmidl C, Luisser M, Padouvas E, Lasselsberger L, Rzaca M, Ramirez-Santa Cruz C, Handler M, Peng G, Bauer H, Puxbaum H (2011) Particulate and gaseous emissions from manually and automatically fired small scale combustion systems. Atmos Environ 45(39):7443–7454Google Scholar
  120. 120.
    Verma V, Bram S, De Ruyck J (2009) Small scale biomass heating systems: standards, quality labelling and market driving factors—an EU outlook. Biomass Bioenergy 33(10):1393–1402Google Scholar
  121. 121.
    Verma V, Bram S, Delattin F, Laha P, Vandendael I, Hubin A, De Ruyck J (2012) Agro-pellets for domestic heating boilers: standard laboratory and real life performance. Appl Energy 90(1):17–23Google Scholar
  122. 122.
    Gonzalez JF, Gonzalez-Garcia CM, Ramiro A, Gonzalez J, Sabio E, Gañan J, Rodriguez MA (2004) Combustion optimisation of biomass residue pellets for domestic heating with a mural boiler. Biomass Bioenergy 27(2):145–154Google Scholar
  123. 123.
    Jeguirim M, Dorge S, Trouve G (2010) Thermogravimetric analysis and emission characteristics of two energy crops in air atmosphere: Arundo donax and Miscanthus giganthus. Bioresour Technol 101(2):788–793PubMedGoogle Scholar
  124. 124.
    Chandrasekaran SR, Hopke PK, Hurlbut A, Newtown M (2013) Characterization of emissions from grass pellet combustion. Energy Fuel 27(9):5298–5306Google Scholar
  125. 125.
    Kenney W, Sennerby-Forsse L, Layton P (1990) A review of biomass quality research relevant to the use of poplar and willow for energy conversion. Biomass 21(3):163–188Google Scholar
  126. 126.
    Tharakan PJ, Volk TA, Abrahamson LP, White EH (2003) Energy feedstock characteristics of willow and hybrid poplar clones at harvest age. Biomass and Bioenergy 25(6):571–580. doi: 10.1016/S0961-9534(03)00054-0 Google Scholar
  127. 127.
    Woodcock D, Shier A (2003) Does canopy position affect wood specific gravity in temperate forest trees? Ann Bot 91(5):529–537PubMedPubMedCentralGoogle Scholar
  128. 128.
    White RH (1987) Effect of lignin content and extractives on the higher heating value of wood. Wood Fiber Sci 19(4):446–452Google Scholar
  129. 129.
    Miles TR, Miles TR, Jr., Baxter LL, Bryers RW, Jenkins BM, Oden LL (1996) Alkali deposits found in biomass power plants. A preliminary investigation of their extent and nature, edn. Report NREL/TP-433-8142, National Renewable Energy Laboratory, Golden, CO, USA
  130. 130.
    Eisenbies M, Volk T, Abrahamson L, Shuren R, Stanton B, Posselius J, McArdle M, Karapetyan S, Patel A, Shi S, Serpa. J (in review) Development and deployment of a short rotation woody crops harvesting system based on a Case New Holland Forage Harvester and SRC Woody Crop Header. Final report for USDOE project DE-EE0001037Google Scholar
  131. 131.
    ISO (2013) Solid biofuels-fuel specifications and classes—Part 4: graded wood chips. ISO/FDIS 17225–4:2013(E), Geneva, SwitzerlandGoogle Scholar
  132. 132.
    Gillespie GD, Everard CD, Fagan CC, McDonnell KP (2013) Prediction of quality parameters of biomass pellets from proximate and ultimate analysis. Fuel 111:771–777. doi: 10.1016/j.fuel.2013.05.002 Google Scholar
  133. 133.
    Lam PK, Lam PY, Sokhansanj S, Bi X, Lim C, Sidders D, Melin S (2010) Evaluation of hybrid poplar and salix (Salix) biomass for pellet production, ASABE, 2010 Pittsburgh, Pennsylvania, June 20–June 23, 2010, paper no. 1009799Google Scholar
  134. 134.
    Pellet Fuels Institute (2011) Standard specifications for residential/commercial densified fuel,
  135. 135.
    NYSDOH (2013) Fine particulate matter concentrations in outdoor air near outdoor wood-fired boilers (OWBs). New York State Department of Health, Bureau of Toxic Substance Assessment,
  136. 136.
    EPA (2014) Partners Program Participation. United States Environmental Protection Agency,
  137. 137.
    EPA (2014) 40 CFR Part 60. Standards of performance for new residential wood heaters, new residential hydronic heaters and forced-air furnaces, and new residential masonry heaters. Proposed Rule Fed Regist 79(22):6329–6416Google Scholar
  138. 138.
    Burkhard E, Albrecht R (2008) Biomass combustion in Europe: overview of technologies and regulations. New York State Energy Research and Development Authority, Albany, NY, USA, NYSERDA Final Report 08–03, April, 2008Google Scholar
  139. 139.
  140. 140.
    FSA (2013) FSA Handbook Agricultural Resource Conservation Program 2-CRP (Revision 5, Amendment 17). United States Department of Agriculture, Farm Service Agency,
  141. 141.
    EPA (2014) Questions and answers on changes to the Renewable Fuel Standard Program (RFS2). US Environmental Protection Agency,
  142. 142.
    EPAct (2005) Energy Policy Act of 2005, Section 203. US Public Law 109-58-Aug. 8, 2005.
  143. 143.
    NYS (1976) Energy Law, Section 1–103. New York StateGoogle Scholar
  144. 144.
    FSA (2012) FSA Handbook Biomass Crop Assistance Program (1-BCAP) Amendment 3. United States Department of Agriculture, Farm Service Agency,
  145. 145.
    FSA (2011) Fact Sheet Biomass Crop Assistance Program (BCAP). United States Department of Agriculture, Farm Service Agency,
  146. 146.
    FSA (2012) Fact Sheet Biomass Crop Assistance Program—Project Area Number 10. United States Department of Agriculture, Farm Service Agency,
  147. 147.
    de Vries SC, van de Ven GW, van Ittersum MK, Giller KE (2010) Resource use efficiency and environmental performance of nine major biofuel crops, processed by first-generation conversion techniques. Biomass Bioenergy 34(5):588–601Google Scholar
  148. 148.
    Dhondt AA, Wrege PH, Cerretani J, Sydenstricker KV (2007) Avian species richness and reproduction in short-rotation coppice habitats in central and western New York: capsule species richness and density increase rapidly with coppice age, and are similar to estimates from early successional habitats. Bird Study 54(1):12–22Google Scholar
  149. 149.
    Dauber J, Jones MB, Stout JC (2010) The impact of biomass crop cultivation on temperate biodiversity. GCB Bioenergy 2(6):289–309. doi: 10.1111/j.1757-1707.2010.01058.x Google Scholar
  150. 150.
    Mayton H, Hansen J, Salon P, Ahmed Z, Woodbury P, Crawford R, Viands D (2014) Genotype by environment interactions of perennial grass yields across locations and years in New York State (accepted with revisions). BioEnergy ResGoogle Scholar
  151. 151.
    Adler P, Sanderson M, Goslee S (2004) Management and composition of conservation lands in the Northeastern United States In Proceedings of the 4th Eastern Native Grass Symposium, Lexington, KY October 3–6 2004Google Scholar
  152. 152.
    Bosworth S, Kelly T, Monahan S (2013) Nitrogen fertilization, time of harvest, and soil drainage effects on switchgrass biomass production and fuel quality. 2010–2012. University of Vermont Extension,
  153. 153.
    Adegbidi HG, Briggs RD, Volk TA, White EH, Abrahamson LP (2003) Effect of organic amendments and slow-release nitrogen fertilizer on willow biomass production and soil chemical characteristics. Biomass and Bioenergy 25(4):389–398. doi: 10.1016/S0961-9534(03)00038-2 Google Scholar
  154. 154.
    Cavanagh A, Gasser MO, Labrecque M (2011) Pig slurry as fertilizer on willow plantation. Biomass Bioenergy 35(10):4165–4173. doi: 10.1016/j.biombioe.2011.06.037 Google Scholar
  155. 155.
    Kopp RF, Abrahamson LP, White EH, Nowak CA, Zsuffa L, Burns KF (1996) Woodgrass spacing and fertilization effects on wood biomass production by a willow clone. Biomass Bioenergy 11(6):451–457. doi: 10.1016/s0961-9534(96)00055-4 Google Scholar
  156. 156.
    Labrecque M, Teodorescu TI, Daigle S (1998) Early performance and nutrition of two willow species in short-rotation intensive culture fertilized with wastewater sludge and impact on the soil characteristics. Can J For Res-Revue Canadienne De Recherche Forestiere 28(11):1621–1635. doi: 10.1139/cjfr-28-11-1621 Google Scholar
  157. 157.
    Quaye AK, Volk TA, Hafner S, Leopold DJ, Schirmer C (2011) Impacts of paper sludge and manure on soil and biomass production of willow. Biomass Bioenergy 35(7):2796–2806. doi: 10.1016/j.biombioe.2011.03.008 Google Scholar
  158. 158.
    Quaye AK, Volk TA (2013) Biomass production and soil nutrients in organic and inorganic fertilized willow biomass production systems. Biomass and Bioenergy 57:113–125. doi: 10.1016/j.biombioe.2013.08.002 Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Cathelijne R. Stoof
    • 1
    Email author
  • Brian K. Richards
    • 1
    Email author
  • Peter B. Woodbury
    • 2
  • Eric S. Fabio
    • 3
  • Alice R. Brumbach
    • 4
  • Jerry Cherney
    • 2
  • Srabani Das
    • 1
  • Larry Geohring
    • 1
  • Julie Hansen
    • 5
  • Josh Hornesky
    • 6
  • Hilary Mayton
    • 5
    • 7
  • Cedric Mason
    • 1
  • Gerry Ruestow
    • 8
  • Lawrence B. Smart
    • 3
  • Timothy A. Volk
    • 9
  • Tammo S. Steenhuis
    • 1
  1. 1.Department of Biological and Environmental Engineering, Riley-Robb HallCornell UniversityIthacaUSA
  2. 2.Soil and Crop Sciences Section, School of Integrative Plant Science, Bradfield HallCornell UniversityIthacaUSA
  3. 3.Horticulture Section, School of Integrative Plant ScienceCornell UniversityGenevaUSA
  4. 4.New York Bioenergy AssociationRensselaerUSA
  5. 5.Plant Breeding and Genetics Section, School of Integrative Plant ScienceCornell UniversityIthacaUSA
  6. 6.United States Department of Agriculture-Natural Resources Conservation ServiceMexicoUSA
  7. 7.Center for Teaching ExcellenceCornell UniversityIthacaUSA
  8. 8.Fermata ConsultingUnadillaUSA
  9. 9.Department of Forest and Natural Resources ManagementState University of New York, College of Environmental Science and ForestrySyracuseUSA

Personalised recommendations