Advertisement

BioEnergy Research

, Volume 8, Issue 1, pp 91–99 | Cite as

Is the Oil Seed Crop Camelina sativa a Potential Host for Aphid Pests?

  • Q. Chesnais
  • J. Verzeaux
  • A. Couty
  • V. Le Roux
  • A. AmelineEmail author
Article

Abstract

Camelina sativa is a Brassicaceae that was commonly cultivated in Europe until the nineteenth century. Recently, it has received much interest as an alternative oil seed crop because of its particular oil composition and low requirements in terms of agronomic inputs and its resistance to some Brassicaceae-chewing insects. However, little is known about the consequences of its reintroduction on piercing-sucking insect pests that are not Brassicaceae specialists but that are likely to transmit phytoviruses. In this context, laboratory experiments were conducted to investigate the potential colonization of camelina by four major aphid species of northern France. Orientation tests, feeding behavior assessed by electrical penetration graph, and demographic bioassays showed that the polyphagous species Aphis fabae (Scop) and Myzus persicae (Sulzer) were able to land, feed, and reproduce on the plant. They even fed and performed better on camelina than the Brassicaceae specialist Brevicoryne brassicae (L.). Surprisingly, to a lesser extent, C. sativa could also be a suitable host for the cereal specialist Rhopalosiphum padi (L.). The colonization ability of camelina by the different aphids is discussed in terms of the degree of specialization and physicochemical characteristics of the plant. Camelina may therefore constitute a reservoir for aphid species issued from surrounding crops and their associated pathogens.

Keywords

False flax Host plant suitability Aphididae EPG Demographic parameters Phytoviruses Bioenergy crop 

Notes

Acknowledgments

This work was done, in partnership with the SAS Picardie Innovations Végétales, Enseignements et Recherches Technologiques (P.I.V.E.R.T.), within the frame of the French Institute of Excellence in the field of Low-Carbon Energies (IEED) P.I.V.E.R.T. (www.institut-pivert.com) selected as an Investment for the Future (“Investissements d’Avenir”). This work was supported, as part of the Investments for the Future, by the French Government under the reference ANR-001-01. We thank the Fédération REgionale de Défense contre les Organismes Nuisibles (FREDON) of Picardie for providing the V. faba seeds. Charles Vincent and Shân Williams (Maison des langues/Université de Picardie Jules Verne) are thanked for their critical reading of the manuscript especially concerning the English language.

References

  1. 1.
    Food and Agriculture Organization of the United Nations (2014) Food and Agriculture Organization of the United Nations. http://www.fao.org/home/en/. Accessed 15 March 2014
  2. 2.
    Valentine J, Clifton-Brown J, Hastings A et al (2012) Food vs. fuel: the use of land for lignocellulosic “next generation” energy crops that minimize competition with primary food production. GCB Bioenergy 4:1–19. doi: 10.1111/j.1757-1707.2011.01111.x CrossRefGoogle Scholar
  3. 3.
    Durrett TP, Benning C, Ohlrogge J (2008) Plant triacylglycerols as feedstocks for the production of biofuels. Plant J 54:593–607. doi: 10.1111/j.1365-313X.2008.03442.x CrossRefPubMedGoogle Scholar
  4. 4.
    Cermak SC, Biresaw G, Isbell TA et al (2013) New crop oils—properties as potential lubricants. Ind Crops Prod 44:232–239. doi: 10.1016/j.indcrop.2012.10.035 CrossRefGoogle Scholar
  5. 5.
    Zanetti F, Monti A, Berti MT (2013) Challenges and opportunities for new industrial oilseed crops in EU-27: a review. Ind Crops Prod 50:580–595. doi: 10.1016/j.indcrop.2013.08.030 CrossRefGoogle Scholar
  6. 6.
    Cardone M, Mazzoncini M, Menini S et al (2003) Brassica carinata as an alternative oil crop for the production of biodiesel in Italy : agronomic evaluation, fuel production by transesterification and characterization. Biomass Bioenergy 25:623–636. doi: 10.1016/S0961-9534(03)00058-8 CrossRefGoogle Scholar
  7. 7.
    Alford DV, Nilsson C, Ulber B (2003) Insect pests of oilseed rape. Biocontrol oilseed rape pests. Blackwell Science Ltd, pp 9–42Google Scholar
  8. 8.
    Kovács G, Kaasik R, Metspalu L et al (2013) Could Brassica rapa, Brassica juncea and Sinapis alba facilitate the control of the cabbage seed weevil in oilseed rape crops? Biol Control 65:124–129. doi: 10.1016/j.biocontrol.2013.01.011 CrossRefGoogle Scholar
  9. 9.
    Zehnder G, Gurr GM, Kühne S et al (2007) Arthropod pest management in organic crops. Annu Rev Entomol 52:57–80. doi: 10.1146/annurev.ento.52.110405.091337 CrossRefPubMedGoogle Scholar
  10. 10.
    Pavlista AD, Isbell TA, Baltensperger DD, Hergert GW (2011) Planting date and development of spring-seeded irrigated canola, brown mustard and camelina. Ind Crops Prod 33:451–456. doi: 10.1016/j.indcrop.2010.10.029 CrossRefGoogle Scholar
  11. 11.
    Kroll H (1994) Ein archaologischer Rapsfund des 16. Jahrhunderts, entdeckt in Heide in Holstein, Norddeutschland. J Agron Crop Sci 173:17–21. doi: 10.1111/j.1439-037X.1994.tb00569.x CrossRefGoogle Scholar
  12. 12.
    Fröhlich A, Rice B (2005) Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Ind Crops Prod 21:25–31. doi: 10.1016/j.indcrop.2003.12.004 CrossRefGoogle Scholar
  13. 13.
    Bonjean A, Le Goffic F (1999) Camelina sativa (L.) Crantz : une opportunité pour l’agriculture et l’industrie européennes. Oilseeds fats. Crop Lipids 6:28–34Google Scholar
  14. 14.
    Naranjo SE, Stefanek MA (2012) Feeding behavior of a potential insect pest, Lygus hesperus, on four new industrial crops for the arid southwestern USA. Ind Crops Prod 37:358–361. doi: 10.1016/j.indcrop.2011.12.020 CrossRefGoogle Scholar
  15. 15.
    Solis A, Vidal I, Paulino L et al (2013) Camelina seed yield response to nitrogen, sulfur, and phosphorus fertilizer in South Central Chile. Ind Crops Prod 44:132–138. doi: 10.1016/j.indcrop.2012.11.005 CrossRefGoogle Scholar
  16. 16.
    Johnson JMF, Gesch RW (2013) Calendula and camelina response to nitrogen fertility. Ind Crops Prod 43:684–691. doi: 10.1016/j.indcrop.2012.07.056 CrossRefGoogle Scholar
  17. 17.
    Putnam DH, Budin JT, Field LA, Breene WM (1993) Camelina: a promising low-input oilseed. In: Janick J, Simon JE (eds) New Crop. Wiley, New York, pp 314–322Google Scholar
  18. 18.
    French AN, Hunsaker D, Thorp K, Clarke T (2009) Evapotranspiration over a camelina crop at Maricopa, Arizona. Ind Crops Prod 29:289–300. doi: 10.1016/j.indcrop.2008.06.001 CrossRefGoogle Scholar
  19. 19.
    Schillinger WF, Wysocki DJ, Chastain TG et al (2012) Camelina: planting date and method effects on stand establishment and seed yield. F Crop Res 130:138–144. doi: 10.1016/j.fcr.2012.02.019 CrossRefGoogle Scholar
  20. 20.
    Sharma G, Kumar VD, Haque A et al (2002) Brassica coenospecies : a rich reservoir for genetic resistance to leaf spot caused by Alternaria brassicae. Euphytica 125:411–417. doi: 10.1023/A:1016050631673 CrossRefGoogle Scholar
  21. 21.
    Henderson AE, Hallett RH, Soroka JJ (2004) Prefeeding behavior of the crucifer flea beetle, Phyllotreta cruciferae, on host and nonhost crucifers. J Insect Behav 17:17–39. doi: 10.1023/B:JOIR.0000025130.20327.1a CrossRefGoogle Scholar
  22. 22.
    Matthaüs B, Zubr J (2000) Variability of specific components in Camelina sativa oilseed cakes. Ind Crops Prod 12:9–18. doi: 10.1016/S0926-6690(99)00040-0 CrossRefGoogle Scholar
  23. 23.
    Paulsen HM (2007) Mischfruchtanbausysteme mit Ölpflanzen im ökologischen Landbau 1. Ertragsstruktur des Mischfruchtanbaus von Leguminosen oder Sommerweizen mit Leindotter (Camelina sativa L. Crantz). Landbauforsch Völkenrode 1:107–117Google Scholar
  24. 24.
    Groeneveld JH, Klein A-M (2013) Pollination of two oil-producing plant species: Camelina (Camelina sativa L. Crantz) and pennycress (Thlaspi arvense L.) double-cropping in Germany. GCB Bioenergy 1–10. doi:  10.1111/gcbb.12122
  25. 25.
    Saucke H, Ackermann K (2006) Weed suppression in mixed cropped grain peas and false flax (Camelina sativa). Weed Res 46:453–461. doi: 10.1111/j.1365-3180.2006.00530.x CrossRefGoogle Scholar
  26. 26.
    Abramovič H, Butinar B, Nikolič V (2007) Changes occurring in phenolic content, tocopherol composition and oxidative stability of Camelina sativa oil during storage. Food Chem 104:903–909. doi: 10.1016/j.foodchem.2006.12.044 CrossRefGoogle Scholar
  27. 27.
    Berhow MA, Polat U, Glinski JA et al (2013) Optimized analysis and quantification of glucosinolates from Camelina sativa seeds by reverse-phase liquid chromatography. Ind Crop Prod 43:119–125. doi: 10.1016/j.indcrop.2012.07.018 CrossRefGoogle Scholar
  28. 28.
    Gardiner MA, Tuell JK, Isaacs R et al (2010) Implications of three biofuel crops for beneficial arthropods in agricultural landscapes. BioEnergy Res 3:6–19. doi: 10.1007/s12155-009-9065-7 CrossRefGoogle Scholar
  29. 29.
    Bourke D, Stanley D, O’Rourke E, et al. (2013) Response of farmland biodiversity to the introduction of bioenergy crops: effects of local factors and surrounding landscape context. GCB Bioenergy 1–15. doi:  10.1111/gcbb.12089
  30. 30.
    Kelly DW, Paterson RA, Townsend CR et al (2009) Parasite spillback: a neglected concept in invasion ecology? Ecology 90:2047–2056, PMID: 19739367CrossRefPubMedGoogle Scholar
  31. 31.
    Broadbent L, Heathcote GD (1958) Properties and host range of turnip crinkle, rosette and yellow mosaic viruses. Ann Appl Biol 46:585–592. doi: 10.1111/j.1744-7348.1958.tb02242.x CrossRefGoogle Scholar
  32. 32.
    Toba HH (1962) Studies on the host range of watermelon mosaic virus in Hawaii. Plant Dis 46:409–410Google Scholar
  33. 33.
    Hill DS (1983) Myzus persicae (Sulz). Agric. insect pests Trop. their Control. Cambridge University Press, p 746Google Scholar
  34. 34.
    Markham PG, Pinner MS, Raccah B, Hull R (1987) The acquisition of a caulimovirus by different aphid species: comparison with a potyvirus. Ann Appl Biol 111:571–587. doi: 10.1111/j.1744-7348.1987.tb02015.x CrossRefGoogle Scholar
  35. 35.
    Gols R, Veenemans C, Potting RPJ et al (2012) Variation in the specificity of plant volatiles and their use by a specialist and a generalist parasitoid. Anim Behav 83:1231–1242. doi: 10.1016/j.anbehav.2012.02.015 CrossRefGoogle Scholar
  36. 36.
    Boquel S, Delayen C, Couty A et al (2012) Modulation of aphid vector activity by potato virus Y on in vitro potato plants. Am Phytopathol Soc 96:82–86. doi: 10.1094/PDIS-06-11-0499 Google Scholar
  37. 37.
    Brunissen L, Cherqui A, Pelletier Y et al (2009) Host-plant mediated interactions between two aphid species. Entomol Exp Appl 132:30–38. doi: 10.1111/j.1570-7458.2009.00862.x CrossRefGoogle Scholar
  38. 38.
    Tjallingii WF (1988) Electrical recording of stylet penetration activities. In: Elsevier (ed) Aphids: their biology, natural enemies and control. World Crop Pests. Amsterdam, The Netherlands, pp 95–108Google Scholar
  39. 39.
    Giordanengo P (2014) EPG-Calc: a PHP-based script to calculate electrical penetration graph (EPG) parameters. Arthropod Plant Interact 8:163–169. doi: 10.1007/s11829-014-9298-z CrossRefGoogle Scholar
  40. 40.
    Tjallingii WF, Hogen Esch T (1993) Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals. Physiol Entomol 18:317–328. doi: 10.1111/j.1365-3032.1993.tb00604.x CrossRefGoogle Scholar
  41. 41.
    Febvay G, Delobel B, Rahbé Y (1988) Influence of the amino acid balance on the improvement of an artificial diet for a biotype of Acyrthosiphon pisum (Homoptera: Aphididae). Can J Zool 66:2449–2453. doi: 10.1139/z88-362 CrossRefGoogle Scholar
  42. 42.
    Down RE, Gatehouse AMR, Hamilton WDO, Gatehouse JA (1996) Snowdrop lectin inhibits development and decreases fecundity of the Glasshouse Potato Aphid (Aulacorthum solani) when administered in vitro and via transgenic plants both in laboratory and glasshouse trials. J Insect Physiol 42:1035–1045. doi: 10.1016/S0022-1910(96)00065-0 CrossRefGoogle Scholar
  43. 43.
    Le Roux V, Saguez J, Vincent C, Giordanengo P (2004) Rapid method to screen resistance of potato plants against Myzus persicae (Homoptera: Aphididae) in the laboratory. J Econ Entomol 97:2079–2082. doi: 10.1603/0022-0493-97.6.2079 CrossRefPubMedGoogle Scholar
  44. 44.
    Giordanengo P (2012) DEMP 1.5.2, programme php pour calculer les paramètres démographiques (tables de survie)Google Scholar
  45. 45.
    Birch LC (1948) The intrinsic rate of natural increase of an insect population. J Anim Ecol 17:15–26CrossRefGoogle Scholar
  46. 46.
    R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  47. 47.
    Siegel S, Castellan JN (1988) Nonparametric statistics for the behavioral sciences. Nonparametric Stat. Behav. Sci. McGraw-Hill, New York, p 399Google Scholar
  48. 48.
    Dunn J (1964) Multiple comparisons using rank sums. Technometrics 6:241–252CrossRefGoogle Scholar
  49. 49.
    Georgin P, Gouet M (2000) Statitiques avec Excel 2000. 338Google Scholar
  50. 50.
    Niemeyer HM (1990) Secondary plant chemicals in aphid-host interactions. RK Campbell RD Eikenbary Aphid-plant genotype Interact 101–111Google Scholar
  51. 51.
    Powell G, Tosh CR, Hardie J (2006) Host plant selection by aphids: behavioral, evolutionary, and applied perspectives. Annu Rev Entomol 51:309–330. doi: 10.1146/annurev.ento.51.110104.151107 CrossRefPubMedGoogle Scholar
  52. 52.
    Chapman RF, Bernays EA, Simpson SJ (1981) Attraction and repulsion of the aphid, Cavariella aegopodii, by plant odors. J Chem Ecol 7:881–888. doi: 10.1007/BF00992385 CrossRefPubMedGoogle Scholar
  53. 53.
    Nottingham SF, Hardie J, Dawson GW et al (1991) Behavioral and electrophysiological responses of Aphids to host and nonhost plant volatiles. J Chem Ecol 17:1231–1242. doi: 10.1007/BF01402946 CrossRefPubMedGoogle Scholar
  54. 54.
    Pickett JA, Wadhams LJ, Woodcock CM, Hardie J (1992) The chemical ecology of aphids. Annu Rev Entomol 37:21–40. doi: 10.1146/annurev.en.37.010192 CrossRefGoogle Scholar
  55. 55.
    Hardie J (1989) Spectral specificity for targeted flight in the black bean aphid, Aphis fabae. J Insect Physiol 35:619–626. doi: 10.1111/j.1365-3032.1993.tb00612.x CrossRefGoogle Scholar
  56. 56.
    Hori M (1998) Repellency of rosemary oil against Myzus persicae in a laboratory and in a screenhouse. J Chem Ecol 24:1425–1432. doi: 10.1023/A:1020947414051 CrossRefGoogle Scholar
  57. 57.
    Sauvion N (1995) Effets et modes d’action de deux lectines à mannose sur le puceron du pois, Acyrthosiphon pisum (Harris). PhD thesis. INSA Lyon. 257Google Scholar
  58. 58.
    Prado E, Tjallingii WF (1997) Effects of previous plant infestation on sieve element acceptance by two aphids. Entomol Exp Appl 82:189–200. doi: 10.1046/j.1570-7458.1997.00130.x CrossRefGoogle Scholar
  59. 59.
    Sauge M-H, Lacroze J, Poëssel J et al (2002) Induced resistance by Myzus persicae in the peach cultivar “Rubira.”. Entomol Exp Appl 102:29–37. doi: 10.1046/j.1570-7458.2002.00922.x CrossRefGoogle Scholar
  60. 60.
    Bernays EA, Funk DJ (1999) Specialists make faster decisions than generalists : experiments with aphids. Proc R Soc B 266:151–156. doi: 10.1098/rspb.1999.0615 CrossRefPubMedCentralGoogle Scholar
  61. 61.
    Cole RA (1997) Comparison of feeding behaviour of two Brassica pests Brevicoryne brassicae and Myzus persicae on wild and cultivated brassica species. Entomol Exp Appl 85:135–143. doi: 10.1046/j.1570-7458.1997.00243.x CrossRefGoogle Scholar
  62. 62.
    Browne LM, Conn KL, Ayert WA, Tewariy JP (1991) The camalexins: new phytoalexins produced in the leaves of Camelina sativa (Cruciferae). Tetrahedron 41:3909–3914. doi: 10.1016/S0040-4020(01)86431-0 CrossRefGoogle Scholar
  63. 63.
    Kuśnierczyk A, Winge P, Jørstad TS et al (2008) Towards global understanding of plant defence against aphids—timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack. Plant Cell Environ 31:1097–1115. doi: 10.1111/j.1365-3040.2008.01823.x CrossRefPubMedGoogle Scholar
  64. 64.
    Onyilagha JC, Gruber MY, Hallett RH et al (2012) Constitutive flavonoids deter flea beetle insect feeding in Camelina sativa L. Biochem Syst Ecol 42:128–133. doi: 10.1016/j.bse.2011.12.021 CrossRefGoogle Scholar
  65. 65.
    Will T, Van Bel AJE (2006) Physical and chemical interactions between aphids and plants. J Exp Bot 57:729–737. doi: 10.1093/jxb/erj089 CrossRefPubMedGoogle Scholar
  66. 66.
    Stadler B (1995) Adaptive allocation of resources and life-history trade-offs in aphids relative to plant quality. Oecologia 102:246–254. doi: 10.1007/BF00333257 CrossRefGoogle Scholar
  67. 67.
    Le Roux V, Dugravot S, Campan E et al (2008) Wild Solanum resistance to aphids: antixenosis or antibiosis? J Econ Entomol 101:584–591. doi: 10.1603/0022-0493(2008)101[584:WSRTAA]2.0.CO;2 CrossRefPubMedGoogle Scholar
  68. 68.
    Gols R, Bukovinszky T, van Dam NM et al (2008) Performance of generalist and specialist herbivores and their endoparasitoids differs on cultivated and wild Brassica populations. J Chem Ecol 34:132–143. doi: 10.1007/s10886-008-9429-z CrossRefPubMedCentralPubMedGoogle Scholar
  69. 69.
    Le Guigo P, Maingeneau A, Le Corff J (2012) Performance of an aphid Myzus persicae and its parasitoid Diaeretiella rapae on wild and cultivated Brassicaceae. J Plant Interact 7:326–332. doi: 10.1080/17429145.2011.628417 CrossRefGoogle Scholar
  70. 70.
    Fereres A, Moreno A (2009) Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Res 141:158–168. doi: 10.1016/j.virusres.2008.10.020 CrossRefPubMedGoogle Scholar
  71. 71.
    Irwin M, Kampmeier GE, Weisser WW (2007) Aphids movement : process and consequences. In: Van Emden HF, Harrington R (eds) Aphids as crop pests. CABI Publishing, Oxon, pp 153–186CrossRefGoogle Scholar
  72. 72.
    Séguin-Swartz G, Eynck C, Gugel RK et al (2009) Diseases of Camelina sativa (false flax). Can J Plant Pathol 31:375–386. doi: 10.1080/07060660909507612 CrossRefGoogle Scholar
  73. 73.
    Martín B, Collar JL, Tjallingii WF, Fereres A (1997) Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of non-persistently transmitted plant viruses. J Gen Virol 78:2701–2705. doi: 10.1099/vir.0.80632-0 PubMedGoogle Scholar
  74. 74.
    Hooks CRR, Fereres A (2006) Protecting crops from non-persistently aphid-transmitted viruses: a review on the use of barrier plants as a management tool. Virus Res 120:1–16. doi: 10.1016/j.virusres.2006.02.006 CrossRefPubMedGoogle Scholar
  75. 75.
    Lithourgidis AS, Dordas CA, Damalas CA, Vlachostergios DN (2011) Review article. Annual intercrops : an alternative pathway for sustainable agriculture. Aust J Crop Sci 5:396–410, ISSN: 1835-2693Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Q. Chesnais
    • 1
  • J. Verzeaux
    • 1
  • A. Couty
    • 1
  • V. Le Roux
    • 1
  • A. Ameline
    • 1
    Email author
  1. 1.FRE CNRS 3498 Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN), Laboratoire de Bio-Ecologie des Insectes Phytophages et EntomophagesUniversité de Picardie Jules VerneAmiensFrance

Personalised recommendations