Advertisement

BioEnergy Research

, Volume 8, Issue 1, pp 42–52 | Cite as

Dilute Acid Pretreatment of Douglas Fir Forest Residues: Pretreatment Yield, Hemicellulose Degradation, and Enzymatic Hydrolysability

  • Carlos Alvarez-Vasco
  • Mond Guo
  • Xiao ZhangEmail author
Article

Abstract

Two Douglas fir (D. fir) forest residues were evaluated for fermentable sugar production by dilute acid pretreatment and subsequent enzymatic hydrolysis in comparison with a clean D. fir wood chip sample. Detailed mass balances of cellulose, hemicellulose, and lignin fractions presented in D. fir samples during pretreatment and enzyme hydrolysis processes were determined. The presence of higher bark and lignin content in D. fir forest residues lowered substrate hydrolysability by 25–36 % compared to clean D. fir wood chips. A significant variation in biomass recalcitrance between the two forest residues toward biomass pretreatment and enzymatic hydrolysis was also found and reflected by a significant difference in final glucose yield (by ~20 %). Applying ball-milling treatment of pretreated D. fir residues prior to enzyme hydrolysis can significantly enhance their hydrolysability. Both chemical composition and physical property factors (i.e., bulk density) contributed to the recalcitrant nature of forest residues.

Keywords

Dilute acid pretreatment Softwood Enzymatic hydrolysis Forest residues 

Notes

Acknowledgments

Authors are thankful to the Northwest Advance Renewable Alliance (NARA) for the financial support of this project through the US Department of Agriculture (USDA) Grant no. 2011-68005-30416, and the Administrative Department of Science and Technology of Colombia (Colciencias) for the support through the Fulbright-Colciencias Scholarship (2011) to the Ph.D. Studies of Carlos Alvarez-Vasco. We are also thankful to Pedro Guajardo and Scott Geleynse for their technical assistance, and Gevan Marrs for supplying forest residues and pulp wood chips.

Supplementary material

12155_2014_9496_MOESM1_ESM.docx (145 kb)
ESM 1 (DOCX 144 kb)

Reference

  1. 1.
    Leu S-Y, Zhu JY, Gleisner R, Sessions J, Marrs G (2013) Robust enzymatic saccharification of a Douglas-fir forest harvest residue by SPORL. Biomass Bioenergy 59:393–401. doi: 10.1016/j.biombioe.2013.08.014 CrossRefGoogle Scholar
  2. 2.
    Singhania RR, Chiesa S, Sukumaran RK, Villegas JD, Patel AK, Gnansounou E, Pandey A (2011) Pretreatment of Douglas fir wood biomass for improving saccharification efficiencies. ASTM Spec Tech Publ 1477:518–529Google Scholar
  3. 3.
    Gan J, Smith CT (2006) Availability of logging residues and potential for electricity production and carbon displacement in the USA. Biomass Bioenergy 30(12):1011–1020. doi: 10.1016/j.biombioe.2005.12.013 CrossRefGoogle Scholar
  4. 4.
    Oasmaa A, Kuoppala E, Gust S, Solantausta Y (2002) Fast pyrolysis of forestry residue. 1. Effect of extractives on phase separation of pyrolysis liquids. Energy Fuels 17(1):1–12. doi: 10.1021/ef020088x CrossRefGoogle Scholar
  5. 5.
    Oasmaa A, Solantausta Y, Arpiainen V, Kuoppala E, Sipilä K (2009) Fast pyrolysis bio-oils from wood and agricultural residues. Energy Fuels 24(2):1380–1388. doi: 10.1021/ef901107f CrossRefGoogle Scholar
  6. 6.
    Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20(3):848–889. doi: 10.1021/ef0502397 CrossRefGoogle Scholar
  7. 7.
    Brandt A, Grasvik J, Hallett JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15(3):550–583CrossRefGoogle Scholar
  8. 8.
    Zhang C, Zhu JY, Gleisner R, Sessions J (2012) Fractionation of forest residues of Douglas-fir for fermentable sugar production by SPORL pretreatment. Bioenerg Res 5(4):978–988. doi: 10.1007/s12155-012-9213-3 CrossRefGoogle Scholar
  9. 9.
    Shi J, Ebrik MA, Wyman CE (2011) Sugar yields from dilute sulfuric acid and sulfur dioxide pretreatments and subsequent enzymatic hydrolysis of switchgrass. Bioresour Technol 102(19):8930–8938. doi: 10.1016/j.biortech.2011.07.042 CrossRefPubMedGoogle Scholar
  10. 10.
    Jensen JR, Morinelly JE, Gossen KR, Brodeur-Campbell MJ, Shonnard DR (2010) Effects of dilute acid pretreatment conditions on enzymatic hydrolysis monomer and oligomer sugar yields for aspen, balsam, and switchgrass. Bioresour Technol 101(7):2317–2325. doi: 10.1016/j.biortech.2009.11.038 CrossRefPubMedGoogle Scholar
  11. 11.
    Wei W, Wu S, Liu L (2012) Enzymatic saccharification of dilute acid pretreated eucalyptus chips for fermentable sugar production. Bioresour Technol 110:302–307. doi: 10.1016/j.biortech.2012.01.003 CrossRefPubMedGoogle Scholar
  12. 12.
    Nguyen QA, Tucker MP, Boynton BL, Keller FA, Schell DJ (1998) Dilute acid pretreatment of softwoods. Appl Biochem Biotechnol 70–72(1):77–87. doi: 10.1007/bf02920125 CrossRefGoogle Scholar
  13. 13.
    Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686. doi: 10.1016/j.biortech.2004.06.025 CrossRefPubMedGoogle Scholar
  14. 14.
    Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY, Mitchinson C, Saddler JN (2009) Comparative sugar recovery and fermentation data following pretreatment of poplar wood by leading technologies. Biotechnol Prog 25(2):333–339. doi: 10.1002/btpr.142 CrossRefPubMedGoogle Scholar
  15. 15.
    Tian S, Zhu W, Gleisner R, Pan XJ, Zhu JY (2011) Comparisons of SPORL and dilute acid pretreatments for sugar and ethanol productions from aspen. Biotechnol Prog 27(2):419–427. doi: 10.1002/btpr.545 CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang C, Lei X, Scott CT, Zhu JY, Li K (2014) Comparison of dilute acid and sulfite pretreatment for enzymatic saccharification of earlywood and latewood of Douglas fir. Bioenerg Res 7(1):362–370. doi: 10.1007/s12155-013-9376-6 CrossRefGoogle Scholar
  17. 17.
    Alvarez-Vasco C, Zhang X (2013) Alkaline hydrogen peroxide pretreatment of softwood: hemicellulose degradation pathways. Bioresour Technol 150:321–327. doi: 10.1016/j.biortech.2013.10.020 CrossRefPubMedGoogle Scholar
  18. 18.
    Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66(1):10–26. doi: 10.1007/s00253-004-1642-2 CrossRefPubMedGoogle Scholar
  19. 19.
    Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74(1):25–33CrossRefGoogle Scholar
  20. 20.
    Hames B, Ruiz R, Scarlata C, Sluiter A, Sluiter J, Templeton D (2008) Preparation of samples for biomass compositional analysis, Laboratory Analytical Procedure (LAP): Technical Report NREL/TP-510-42620. National Renowable Energy Laboratoy, GoldenGoogle Scholar
  21. 21.
    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2011) Determination of structural carbohydrates and lignin in biomass, Laboratory Analytical Procedure (LAP): Technical Report NREL/TP-510-42618. National Renowable Energy Laboratoy, GoldenGoogle Scholar
  22. 22.
    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Determination of sugars, byproducts, and degradation products in liquid fraction process samples, Laboratory Analytical Procedure (LAP): Technical Report NREL/TP-510-42623. National Renowable Energy Laboratoy, GoldenGoogle Scholar
  23. 23.
    Lin SY, Dence CW (1992) Methods in lignin chemistry, vol Springer Series in Wood Science. Springer- Verlag, BerlinCrossRefGoogle Scholar
  24. 24.
    Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546. doi: 10.1146/annurev.arplant.54.031902.134938 CrossRefPubMedGoogle Scholar
  25. 25.
    Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, BerlinGoogle Scholar
  26. 26.
    Hames BR (2009) Biomass compositional analysis for energy applications. Springer Protocol 581:145–167Google Scholar
  27. 27.
    Boussaid A-L, Esteghlalian A, Gregg D, Lee K, Saddler J (2000) Steam pretreatment of Douglas-fir wood chips. Appl Biochem Biotechnol 84–86(1):693–705. doi: 10.1385/abab:84-86:1-9:693 CrossRefPubMedGoogle Scholar
  28. 28.
    Shuai L, Yang Q, Zhu JY, Lu FC, Weimer PJ, Ralph J, Pan XJ (2010) Comparative study of SPORL and dilute-acid pretreatments of spruce for cellulosic ethanol production. Bioresour Technol 101(9):3106–3114. doi: 10.1016/j.biortech.2009.12.044 CrossRefPubMedGoogle Scholar
  29. 29.
    Nguyen Q, Tucker M, Keller F, Eddy F (2000) Two-stage dilute-acid pretreatment of softwoods. Appl Biochem Biotechnol 84–86(1–9):561–576. doi: 10.1385/abab:84-86:1-9:561 CrossRefPubMedGoogle Scholar
  30. 30.
    Palonen H, Thomsen A, Tenkanen M, Schmidt A, Viikari L (2004) Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood. Appl Biochem Biotechnol 117(1):1–17. doi: 10.1385/abab:117:1:01 CrossRefPubMedGoogle Scholar
  31. 31.
    Girisuta B, Janssen LP, Heeres HJ (2006) Green chemicals: a kinetic study on the conversion of glucose to levulinic acid. Chem Eng Res Des 84(5):339–349. doi: 10.1205/cherd05038 CrossRefGoogle Scholar
  32. 32.
    Zhang C, Houtman CJ, Zhu JY (2014) Using low temperature to balance enzymatic saccharification and furan formation during SPORL pretreatment of Douglas-fir. Process Biochem 49(3):466–473. doi: 10.1016/j.procbio.2013.12.017 CrossRefGoogle Scholar
  33. 33.
    Nitsos CK, Matis KA, Triantafyllidis KS (2013) Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process. ChemSusChem 6(1):110–122. doi: 10.1002/cssc.201200546 CrossRefPubMedGoogle Scholar
  34. 34.
    Hu F, Ragauskas A (2012) Pretreatment and lignocellulosic chemistry. Bioenerg Res 5(4):1043–1066. doi: 10.1007/s12155-012-9208-0 CrossRefGoogle Scholar
  35. 35.
    Holmbom B, Eckerman C, Eklund P, Hemming J, Nisula L, Reunanen M, Sjöholm R, Sundberg A, Sundberg K, Willför S (2003) Knots in trees—a new rich source of lignans. Phytochem Rev 2(3):331–340. doi: 10.1023/B:PHYT.0000045493.95074.a8 CrossRefGoogle Scholar
  36. 36.
    Harrison MD, Zhang Z, Shand K, O’Hara IM, Doherty WOS, Dale JL (2013) Effect of pretreatment on saccharification of sugarcane bagasse by complex and simple enzyme mixtures. Bioresour Technol 148:105–113. doi: 10.1016/j.biortech.2013.08.099 CrossRefPubMedGoogle Scholar
  37. 37.
    Kim S, Kim CH (2013) Bioethanol production using the sequential acid/alkali-pretreated empty palm fruit bunch fiber. Renew Energy 54:150–155. doi: 10.1016/j.renene.2012.08.032 CrossRefGoogle Scholar
  38. 38.
    Mais U, Esteghlalian A, Saddler J, Mansfield S (2002) Enhancing the enzymatic hydrolysis of cellulosic materials using simultaneous ball milling. Appl Biochem Biotechnol 98–100(1–9):815–832. doi: 10.1385/abab:98-100:1-9:815 CrossRefPubMedGoogle Scholar
  39. 39.
    Rasrendra C, Makertihartha I, Adisasmito S, Heeres H (2010) Green chemicals from d-glucose: systematic studies on catalytic effects of inorganic salts on the chemo-selectivity and yield in aqueous solutions. Top Catal 53(15):1241–1247. doi: 10.1007/s11244-010-9570-0 CrossRefGoogle Scholar
  40. 40.
    Patil SKR, Heltzel J, Lund CRF (2012) Comparison of structural features of humins formed catalytically from glucose, fructose, and 5-hydroxymethylfurfuraldehyde. Energy Fuels 26(8):5281–5293. doi: 10.1021/ef3007454 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Voiland School of Chemical Engineering and Bioengineering. Bioproducts, Science and Engineering LaboratoryWashington State UniversityRichlandUSA

Personalised recommendations