Skip to main content
Log in

A Multi-Level Analysis Approach to Measuring Variations in Biomass Recalcitrance of Douglas Fir Tree Samples

  • Published:
BioEnergy Research Aims and scope Submit manuscript


Biomass recalcitrance is a major bottleneck in the development of an economically viable process to convert woody biomass into fuels and other valuable chemicals. Selective breeding of trees with low recalcitrance toward biofuel conversion could help significantly reduce the cost of biofuel production, but such efforts would require a greater understanding of the nature of variations in the biomass recalcitrance of softwood species. The complexity of biomass recalcitrance, however, hinders research into determining the viability of breeding programs aimed to improve the recalcitrance of softwoods. In this study, a method was developed to determine biomass recalcitrance at three levels: chemical composition, pretreatment yield, and sugar release from the enzymatic hydrolysis. This method is designed to investigate the biomass recalcitrance variations among different families of Douglas-fir, which is the most abundant and promising softwood species for biofuel production in the Pacific Northwest region. Wood samples from 150 plantation-grown trees were collected and analyzed to test the method and the applicability of the parameters screened. The relationships between these levels are discussed to determine the best method for screening large D. fir populations. A parameter, a biomass recalcitrance factor, was introduced to quantify the level of biomass recalcitrance toward sugar production from different D. fir trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others


  1. Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25:153–157

    Article  CAS  PubMed  Google Scholar 

  2. Aden A, Foust T (2009) Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose 16:535–545

    Article  CAS  Google Scholar 

  3. Brent, D., and S. Rabotyagov (2013) Land use change from biofuels derived from forest residue. Economics Research International. 2013

  4. Mabee WE, Gregg DJ, Arato C, Berlin A, Bura R, Gilkes N, Mirochnik O, Pan XJ, Pye EK, Saddler JN (2006) Updates on softwood-to-ethanol process development. Appl Biochem Biotechnol 129:55–70

    Article  PubMed  Google Scholar 

  5. Howe GT, Jayawickrama K, Cherry M, Johnson GR, Wheeler NC (2006) Breeding Douglas-fir. In: Janick J (ed) Plant Breeding Reviews, Vol 27. Wiley-Blackwell, Commerce Place, 350 Main Street, Malden 02148, Ma USA, City, pp 245–353

    Google Scholar 

  6. Zhu JY, Pan X, Zalesny RS Jr (2010) Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Appl Microbiol Biotechnol 87:847–857

    Article  CAS  PubMed  Google Scholar 

  7. Wang ZJ, Zhu JY, Zalesny RS Jr, Chen KF (2012) Ethanol production from poplar wood through enzymatic saccharification and fermentation by dilute acid and SPORL pretreatments. Fuel 95:606–614

    Article  CAS  Google Scholar 

  8. Mansfield SD, Mooney C, Saddler JN (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 15:804–816

    Article  CAS  PubMed  Google Scholar 

  9. Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824

    Article  CAS  PubMed  Google Scholar 

  10. Foston M, Ragauskas AJ (2012) Biomass characterization: recent progress in understanding biomassr. Ind Biotechnol 8:191–208

    Article  CAS  Google Scholar 

  11. Ukrainetz NK, Kang KY, Aitken SN, Stoehr M, Mansfield SD (2008) Heritability and phenotypic and genetic correlations of coastal Douglas-fir (Pseudotsuga menziesii) wood quality traits. Can JForest Research-Revue Canadienne De Recherche Forestiere 38:1536–1546

    Article  CAS  Google Scholar 

  12. Capron A, Chang XF, Hall H, Ellis B, Beatson RP, Berleth T (2013) Identification of quantitative trait loci controlling fibre length and lignin content in Arabidopsis thaliana stems. J Exp Bot 64:185–197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Zhang TY, Wyman CE, Jakob K, Yang B (2012) Rapid selection and identification of Miscanthus genotypes with enhanced glucan and xylan yields from hydrothermal pretreatment followed by enzymatic hydrolysis. Biotechnology Biofuels 5:14

    Article  Google Scholar 

  14. Howe GT, Yu JB, Knaus B, Cronn R, Kolpak S, Dolan P, Lorenz WW, Dean JFD (2013) A SNP resource for Douglas-fir: de novo transcriptome assembly and SNP detection and validation. BMC Genomics 14:137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Nystedt, B., N. R. Street, A. Wetterbom, A. Zuccolo, Y.-C. Lin, D. G. Scofield, F. Vezzi, N. Delhomme, S. Giacomello, A. Alexeyenko, R. Vicedomini, K. Sahlin, E. Sherwood, M. Elfstrand, L. Gramzow, K. Holmberg, J. Hallman, O. Keech, L. Klasson, M. Koriabine, M. Kucukoglu, M. Kaller, J. Luthman, F. Lysholm, T. Niittyla, A. Olson, N. Rilakovic, C. Ritland, J. A. Rossello, J. Sena, T. Svensson, C. Talavera-Lopez, G. Theiszen, H. Tuominen, K. Vanneste, Z.-Q. Wu, B. Zhang, P. Zerbe, L. Arvestad, R. Bhalerao, J. Bohlmann, J. Bousquet, R. Garcia Gil, T. R. Hvidsten, P. de Jong, J. MacKay, M. Morgante, K. Ritland, B. Sundberg, S. Lee Thompson, Y. Van de Peer, B. Andersson, O. Nilsson, P. K. Ingvarsson, J. Lundeberg, and S. Jansson (2013) The Norway spruce genome sequence and conifer genome evolution. Nature. advance online publication

  16. Studer MH, DeMartini JD, Brethauer S, McKenzie HL, Wyman CE (2010) Engineering of a high-throughput screening system to identify cellulosic biomass, pretreatments, and enzyme formulations that enhance sugar release. Biotechnol Bioeng 105:231–238

    Article  CAS  PubMed  Google Scholar 

  17. Decker SR, Brunecky R, Tucker MP, Himmel ME, Selig MJ (2009) High-throughput screening techniques for biomass conversion. Bioenergy Research 2:179–192

    Article  Google Scholar 

  18. Gao XD, Kumar R, DeMartini JD, Li HJ, Wyman CE (2013) Application of high throughput pretreatment and co-hydrolysis system to thermochemical pretreatment. Part 1: dilute acid. Biotechnol Bioeng 110:754–762

    Article  CAS  PubMed  Google Scholar 

  19. DeMartini JD, Studer MH, Wyman CE (2011) Small-scale and automatable high-throughput compositional analysis of biomass. Biotechnol Bioeng 108:306–312

    Article  CAS  PubMed  Google Scholar 

  20. Vogel KP, Dien BS, Jung HG, Casler MD, Masterson SD, Mitchell RB (2011) Quantifying actual and theoretical ethanol yields for switchgrass strains using NIRS analyses. Bioenergy Research 4:96–110

    Article  Google Scholar 

  21. Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and D. Crocker (2008) Determination of structural carbohydrates and lignin in biomass. In: Editor (ed.)^(eds.)|. Book Title|. Publisher|, City|

  22. Wise LE, Murphy M, D'Addieco AA (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Tr J 122:35–43

    CAS  Google Scholar 

  23. Timell TE (1959) Isolation of holocellulose from Jack pine Pinus banksiana. Pulp Paper Mag Can 60:T26–T28

    CAS  Google Scholar 

  24. Ju X, Engelhard M, Zhang X (2013) An advanced understanding of the specific effects of xylan and surface lignin contents on enzymatic hydrolysis of lignocellulosic biomass. Bioresour Technol 132:137–145

    Article  CAS  PubMed  Google Scholar 

  25. Alvarez-Vasco C, Zhang X (2013) Alkaline hydrogen peroxide pretreatment of softwood: hemicellulose degradation pathways. Bioresour Technol 150:6

    Article  Google Scholar 

  26. Leu S-Y, Zhu JY (2013) Substrate-related factors affecting enzymatic saccharification of lignocelluloses: our recent understanding. Bioenergy Research 6:405–415

    Article  CAS  Google Scholar 

  27. Back EL (2000) The locations and morphology of resin components in the wood. In: Back EL, Allen LH (eds) Pitch Control, Wood Resin and Deresination. TAPPI Press, USA

    Google Scholar 

  28. Yang B, Boussaid A, Mansfield SD, Gregg DJ, Saddler JN (2002) Fast and efficient alkaline peroxide treatment to enhance the enzymatic digestibility of steam-exploded softwood substrates. Biotechnol Bioeng 77:678–684

    Article  CAS  PubMed  Google Scholar 

  29. Nakagame, S., R. P. Chandra, and J. N. Saddler (2011) The influence of lignin on the enzymatic hydrolysis of pretreated biomass substrates. pp. 145-167In: J. J. Y. Zhu, X. Zhang, and X. J. Pan (eds.). Sustainable Production of Fuels, Chemicals, and Fibers from Forest Biomass. Amer Chemical Soc, 1155 Sixteenth St Nw, Washington, Dc 20036 USA, City

Download references


Funding for this study is provided through the Northwest Advanced Renewables Alliance Project, supported by an Agriculture and Food Research Initiative Competitive Grant No. 2011-68005-30416 from the USDA National Institute of Food and Agriculture.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Xiao Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.


(DOCX 1193 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geleynse, S., Alvarez-Vasco, C., Garcia, K. et al. A Multi-Level Analysis Approach to Measuring Variations in Biomass Recalcitrance of Douglas Fir Tree Samples. Bioenerg. Res. 7, 1411–1420 (2014).

Download citation

  • Published:

  • Issue Date:

  • DOI: