BioEnergy Research

, Volume 7, Issue 4, pp 1411–1420 | Cite as

A Multi-Level Analysis Approach to Measuring Variations in Biomass Recalcitrance of Douglas Fir Tree Samples

  • Scott Geleynse
  • Carlos Alvarez-Vasco
  • Karissa Garcia
  • Keith Jayawickrama
  • Matt Trappe
  • Xiao Zhang


Biomass recalcitrance is a major bottleneck in the development of an economically viable process to convert woody biomass into fuels and other valuable chemicals. Selective breeding of trees with low recalcitrance toward biofuel conversion could help significantly reduce the cost of biofuel production, but such efforts would require a greater understanding of the nature of variations in the biomass recalcitrance of softwood species. The complexity of biomass recalcitrance, however, hinders research into determining the viability of breeding programs aimed to improve the recalcitrance of softwoods. In this study, a method was developed to determine biomass recalcitrance at three levels: chemical composition, pretreatment yield, and sugar release from the enzymatic hydrolysis. This method is designed to investigate the biomass recalcitrance variations among different families of Douglas-fir, which is the most abundant and promising softwood species for biofuel production in the Pacific Northwest region. Wood samples from 150 plantation-grown trees were collected and analyzed to test the method and the applicability of the parameters screened. The relationships between these levels are discussed to determine the best method for screening large D. fir populations. A parameter, a biomass recalcitrance factor, was introduced to quantify the level of biomass recalcitrance toward sugar production from different D. fir trees.


Biomass recalcitrance Douglas fir Biomass composition Multi-level biomass analysis 



Funding for this study is provided through the Northwest Advanced Renewables Alliance Project, supported by an Agriculture and Food Research Initiative Competitive Grant No. 2011-68005-30416 from the USDA National Institute of Food and Agriculture.

Supplementary material

12155_2014_9483_MOESM1_ESM.docx (1.2 mb)
ESM 1 (DOCX 1193 kb)


  1. 1.
    Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25:153–157PubMedCrossRefGoogle Scholar
  2. 2.
    Aden A, Foust T (2009) Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose 16:535–545CrossRefGoogle Scholar
  3. 3.
    Brent, D., and S. Rabotyagov (2013) Land use change from biofuels derived from forest residue. Economics Research International. 2013Google Scholar
  4. 4.
    Mabee WE, Gregg DJ, Arato C, Berlin A, Bura R, Gilkes N, Mirochnik O, Pan XJ, Pye EK, Saddler JN (2006) Updates on softwood-to-ethanol process development. Appl Biochem Biotechnol 129:55–70PubMedCrossRefGoogle Scholar
  5. 5.
    Howe GT, Jayawickrama K, Cherry M, Johnson GR, Wheeler NC (2006) Breeding Douglas-fir. In: Janick J (ed) Plant Breeding Reviews, Vol 27. Wiley-Blackwell, Commerce Place, 350 Main Street, Malden 02148, Ma USA, City, pp 245–353Google Scholar
  6. 6.
    Zhu JY, Pan X, Zalesny RS Jr (2010) Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Appl Microbiol Biotechnol 87:847–857PubMedCrossRefGoogle Scholar
  7. 7.
    Wang ZJ, Zhu JY, Zalesny RS Jr, Chen KF (2012) Ethanol production from poplar wood through enzymatic saccharification and fermentation by dilute acid and SPORL pretreatments. Fuel 95:606–614CrossRefGoogle Scholar
  8. 8.
    Mansfield SD, Mooney C, Saddler JN (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 15:804–816PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824PubMedCrossRefGoogle Scholar
  10. 10.
    Foston M, Ragauskas AJ (2012) Biomass characterization: recent progress in understanding biomassr. Ind Biotechnol 8:191–208CrossRefGoogle Scholar
  11. 11.
    Ukrainetz NK, Kang KY, Aitken SN, Stoehr M, Mansfield SD (2008) Heritability and phenotypic and genetic correlations of coastal Douglas-fir (Pseudotsuga menziesii) wood quality traits. Can JForest Research-Revue Canadienne De Recherche Forestiere 38:1536–1546CrossRefGoogle Scholar
  12. 12.
    Capron A, Chang XF, Hall H, Ellis B, Beatson RP, Berleth T (2013) Identification of quantitative trait loci controlling fibre length and lignin content in Arabidopsis thaliana stems. J Exp Bot 64:185–197PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Zhang TY, Wyman CE, Jakob K, Yang B (2012) Rapid selection and identification of Miscanthus genotypes with enhanced glucan and xylan yields from hydrothermal pretreatment followed by enzymatic hydrolysis. Biotechnology Biofuels 5:14CrossRefGoogle Scholar
  14. 14.
    Howe GT, Yu JB, Knaus B, Cronn R, Kolpak S, Dolan P, Lorenz WW, Dean JFD (2013) A SNP resource for Douglas-fir: de novo transcriptome assembly and SNP detection and validation. BMC Genomics 14:137PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Nystedt, B., N. R. Street, A. Wetterbom, A. Zuccolo, Y.-C. Lin, D. G. Scofield, F. Vezzi, N. Delhomme, S. Giacomello, A. Alexeyenko, R. Vicedomini, K. Sahlin, E. Sherwood, M. Elfstrand, L. Gramzow, K. Holmberg, J. Hallman, O. Keech, L. Klasson, M. Koriabine, M. Kucukoglu, M. Kaller, J. Luthman, F. Lysholm, T. Niittyla, A. Olson, N. Rilakovic, C. Ritland, J. A. Rossello, J. Sena, T. Svensson, C. Talavera-Lopez, G. Theiszen, H. Tuominen, K. Vanneste, Z.-Q. Wu, B. Zhang, P. Zerbe, L. Arvestad, R. Bhalerao, J. Bohlmann, J. Bousquet, R. Garcia Gil, T. R. Hvidsten, P. de Jong, J. MacKay, M. Morgante, K. Ritland, B. Sundberg, S. Lee Thompson, Y. Van de Peer, B. Andersson, O. Nilsson, P. K. Ingvarsson, J. Lundeberg, and S. Jansson (2013) The Norway spruce genome sequence and conifer genome evolution. Nature. advance online publicationGoogle Scholar
  16. 16.
    Studer MH, DeMartini JD, Brethauer S, McKenzie HL, Wyman CE (2010) Engineering of a high-throughput screening system to identify cellulosic biomass, pretreatments, and enzyme formulations that enhance sugar release. Biotechnol Bioeng 105:231–238PubMedCrossRefGoogle Scholar
  17. 17.
    Decker SR, Brunecky R, Tucker MP, Himmel ME, Selig MJ (2009) High-throughput screening techniques for biomass conversion. Bioenergy Research 2:179–192CrossRefGoogle Scholar
  18. 18.
    Gao XD, Kumar R, DeMartini JD, Li HJ, Wyman CE (2013) Application of high throughput pretreatment and co-hydrolysis system to thermochemical pretreatment. Part 1: dilute acid. Biotechnol Bioeng 110:754–762PubMedCrossRefGoogle Scholar
  19. 19.
    DeMartini JD, Studer MH, Wyman CE (2011) Small-scale and automatable high-throughput compositional analysis of biomass. Biotechnol Bioeng 108:306–312PubMedCrossRefGoogle Scholar
  20. 20.
    Vogel KP, Dien BS, Jung HG, Casler MD, Masterson SD, Mitchell RB (2011) Quantifying actual and theoretical ethanol yields for switchgrass strains using NIRS analyses. Bioenergy Research 4:96–110CrossRefGoogle Scholar
  21. 21.
    Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and D. Crocker (2008) Determination of structural carbohydrates and lignin in biomass. In: Editor (ed.)^(eds.)|. Book Title|. Publisher|, City|Google Scholar
  22. 22.
    Wise LE, Murphy M, D'Addieco AA (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Tr J 122:35–43Google Scholar
  23. 23.
    Timell TE (1959) Isolation of holocellulose from Jack pine Pinus banksiana. Pulp Paper Mag Can 60:T26–T28Google Scholar
  24. 24.
    Ju X, Engelhard M, Zhang X (2013) An advanced understanding of the specific effects of xylan and surface lignin contents on enzymatic hydrolysis of lignocellulosic biomass. Bioresour Technol 132:137–145PubMedCrossRefGoogle Scholar
  25. 25.
    Alvarez-Vasco C, Zhang X (2013) Alkaline hydrogen peroxide pretreatment of softwood: hemicellulose degradation pathways. Bioresour Technol 150:6CrossRefGoogle Scholar
  26. 26.
    Leu S-Y, Zhu JY (2013) Substrate-related factors affecting enzymatic saccharification of lignocelluloses: our recent understanding. Bioenergy Research 6:405–415CrossRefGoogle Scholar
  27. 27.
    Back EL (2000) The locations and morphology of resin components in the wood. In: Back EL, Allen LH (eds) Pitch Control, Wood Resin and Deresination. TAPPI Press, USAGoogle Scholar
  28. 28.
    Yang B, Boussaid A, Mansfield SD, Gregg DJ, Saddler JN (2002) Fast and efficient alkaline peroxide treatment to enhance the enzymatic digestibility of steam-exploded softwood substrates. Biotechnol Bioeng 77:678–684PubMedCrossRefGoogle Scholar
  29. 29.
    Nakagame, S., R. P. Chandra, and J. N. Saddler (2011) The influence of lignin on the enzymatic hydrolysis of pretreated biomass substrates. pp. 145-167In: J. J. Y. Zhu, X. Zhang, and X. J. Pan (eds.). Sustainable Production of Fuels, Chemicals, and Fibers from Forest Biomass. Amer Chemical Soc, 1155 Sixteenth St Nw, Washington, Dc 20036 USA, CityGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Scott Geleynse
    • 1
  • Carlos Alvarez-Vasco
    • 1
  • Karissa Garcia
    • 1
  • Keith Jayawickrama
    • 2
  • Matt Trappe
    • 2
  • Xiao Zhang
    • 1
  1. 1.Bioproducts Sciences and Engineering Laboratory, Voiland School of Chemical Engineering and BioengineeringWashington State UniversityRichlandUSA
  2. 2.College of ForestryOregon State UniversityCorvallisUSA

Personalised recommendations