Skip to main content

Recommendations to Mitigate Potential Sources of Error in Preparation of Biomass Sorghum Samples for Compositional Analyses Used in Industrial and Forage Applications

Abstract

Sweet and forage varieties of sorghum (Sorghum bicolor (L.) Moench) can produce large quantities of soluble sugars, starch, and fiber in a single crop and so are highly suited for bioenergy production. To develop this potential, it is critical to reliably quantify the components of the biomass: primarily carbohydrates (monosaccharides, sucrose, starch, and holocellulose) as well as lignin and extractives. Techniques compiled by the National Renewable Energy Laboratory (NREL) are commonly used for these analyses; however, some characteristics of sorghum require some adaptation of those methods. Here, we present an analysis of some of these characteristics and a modified analytical procedure to account for them. In particular, greater accuracy can be obtained by separating the pith and rind portions of the stalk prior to analysis. Several important properties of the stalk differ between the pith and rind, and in many cases, the magnitude of that difference varies among cultivars. As we demonstrate, analyzing the stalk without separating the pith and rind can lead to systematic bias in the measurement of these properties and lignocellulosic composition; if separation is not possible, the bias can be mitigated by exercising care in ensuring a representative subsampling of ground material. Some modifications to initial Soxhlet extraction procedures also improve the accuracy and practicality of the biomass analysis.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Whitfield MB, Chinn MS, Veal MW (2012) Processing of materials derived from sweet sorghum for biobased products. Ind Crops Prod 37:362–375. doi:10.1016/j.indcrop.2011.12.011

    CAS  Article  Google Scholar 

  2. Smith GA, Bagby MO, Lewellan RT et al (1987) Evaluation of sweet sorghum for fermentable sugar production potential. Crop Sci 27:788–793. doi:10.2135/cropsci1987.0011183X002700040037x

    CAS  Article  Google Scholar 

  3. Bryan WL, Monroe GE, Gascho GJ (1985) Juice expression from sweet sorghum cultivars of different fiber content. Trans Am Soc Agric Eng 28:980–985

    Article  Google Scholar 

  4. Jia F, Chawhuaymak J, Riley MR et al (2013) Efficient extraction method to collect sugar from sweet sorghum. J Biol Eng 7:1. doi:10.1186/1754-1611-7-1

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  5. Monroe G, Nichols R, Bryan W, Sumner H (1984) Sweet sorghum juice extraction with 3-roll mills. Trans ASABE 27:651–654

    Article  Google Scholar 

  6. Bridgers EN, Chinn MS, Veal MW, Stikeleather LF (2011) Influence of juice preparations on the fermentability of sweet sorghum. Biol Eng Trans 4:57–67

    CAS  Article  Google Scholar 

  7. Kundiyana DK, Bellmer DD, Huhnke RL et al (2010) Influence of temperature, pH and yeast on in-field production of ethanol from unsterilized sweet sorghum juice. Biomass Bioenergy 34:1481–1486. doi:10.1016/j.biombioe.2010.04.022

    CAS  Article  Google Scholar 

  8. Rooney WL, Blumenthal J, Bean B, Mullet JE (2007) Designing sorghum as a dedicated bioenergy feedstock. Biofuels Bioprod Bioref 1:147–157. doi:10.1002/bbb.15

    CAS  Article  Google Scholar 

  9. Sawargaonkar GL, Patil MD, Wani SP et al (2013) Nitrogen response and water use efficiency of sweet sorghum cultivars. Field Crops Res 149:245–251. doi:10.1016/j.fcr.2013.05.009

    Article  Google Scholar 

  10. De Souza VF, da Costa Parrella RA, Tardin FD et al (2013) Adaptability and stability of sweet sorghum cultivars. Crop Breed Appl Biotechnol 13:144–151

    Article  Google Scholar 

  11. Godoy JGV, Tesso TT (2013) Analysis of juice yield, sugar content, and biomass accumulation in sorghum. Crop Sci 53:1288. doi:10.2135/cropsci2012.04.0217

    Article  Google Scholar 

  12. Wang Y-H, Acharya A, Burrell AM et al (2013) Mapping and candidate genes associated with saccharification yield in sorghum. Genome 56:659–665. doi:10.1139/gen-2013-0134

    CAS  PubMed  Article  Google Scholar 

  13. Pedersen JF, Sattler SE, Anderson WF (2013) Evaluation of public sweet sorghum A-lines for use in hybrid production. BioEnergy Res 6:91–102. doi:10.1007/s12155-012-9231-1

    Article  Google Scholar 

  14. Rao SS, Patil JV, Prasad PVV et al (2013) Sweet sorghum planting effects on stalk yield and sugar quality in semi-arid tropical environment. Agron J 105:1458. doi:10.2134/agronj2013.0156

    Article  Google Scholar 

  15. Erickson JE, Woodard KR, Sollenberger LE (2012) Optimizing sweet sorghum production for biofuel in the southeastern USA through nitrogen fertilization and top removal. BioEnergy Res 5:86–94. doi:10.1007/s12155-011-9129-3

    Article  Google Scholar 

  16. Cutz L, Sanchez-Delgado S, Ruiz-Rivas U, Santana D (2013) Bioenergy production in Central America: integration of sweet sorghum into sugar mills. Renew Sustain Energy Rev 25:529–542. doi:10.1016/j.rser.2013.05.007

    CAS  Article  Google Scholar 

  17. Thangprompan P, Thanapimmetha A, Saisriyoot M et al (2013) Production of ethanol from sweet sorghum juice using VHG technology: a simulation case study. Appl Biochem Biotechnol 171:294–314. doi:10.1007/s12010-013-0365-1

    CAS  PubMed  Article  Google Scholar 

  18. Andrzejewski B, Eggleston G, Powell R (2013) Pilot plant clarification of sweet sorghum juice and evaporation of raw and clarified juices. Ind Crops Prod 49:648–658. doi:10.1016/j.indcrop.2013.06.027

    CAS  Article  Google Scholar 

  19. Eggleston G, Cole M, Andrzejewski B (2013) New commercially viable processing technologies for the production of sugar feedstocks from sweet sorghum (Sorghum bicolor L. Moench) for manufacture of biofuels and bioproducts. Sugar Tech 15:232–249. doi:10.1007/s12355-013-0229-6

    CAS  Article  Google Scholar 

  20. Heredia-Olea E, Pérez-Carrillo E, Serna-Saldívar SO (2013) Production of ethanol from sweet sorghum bagasse pretreated with different chemical and physical processes and saccharified with fiber degrading enzymes. Bioresour Technol 134:386–390. doi:10.1016/j.biortech.2013.01.162

    CAS  PubMed  Article  Google Scholar 

  21. Matsakas L, Christakopoulos P (2013) Fermentation of liquefacted hydrothermally pretreated sweet sorghum bagasse to ethanol at high-solids content. Bioresour Technol 127:202–208. doi:10.1016/j.biortech.2012.09.107

    CAS  PubMed  Article  Google Scholar 

  22. Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597

    PubMed  Article  Google Scholar 

  23. Theander O (1991) Chemical analysis of lignocellulose materials. Anim Feed Sci Technol 32:35–44. doi:10.1016/0377-8401(91)90007-F

    CAS  Article  Google Scholar 

  24. Sluiter JB, Ruiz RO, Scarlata CJ et al (2010) Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J Agric Food Chem 58:9043–9053. doi:10.1021/jf1008023

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  25. Cao W, Sun C, Liu R et al (2012) Comparison of the effects of five pretreatment methods on enhancing the enzymatic digestibility and ethanol production from sweet sorghum bagasse. Bioresour Technol 111:215–221. doi:10.1016/j.biortech.2012.02.034

    CAS  PubMed  Article  Google Scholar 

  26. Zhang J, Ma X, Yu J et al (2011) The effects of four different pretreatments on enzymatic hydrolysis of sweet sorghum bagasse. Bioresour Technol 102:4585–4589

    CAS  PubMed  Article  Google Scholar 

  27. Murray SC, Rooney WL, Mitchell SE et al (2008) Genetic improvement of sorghum as a biofuel feedstock: II. QTL for stem and leaf structural carbohydrates. Crop Sci 48:2180–2193. doi:10.2135/cropsci2008.01.0068

    Article  Google Scholar 

  28. Cotton J, Burow G, Acosta-Martinez V, Moore-Kucera J (2013) Biomass and cellulosic ethanol production of forage sorghum under limited water conditions. BioEnergy Res 6:711–718. doi:10.1007/s12155-012-9285-0

    CAS  Article  Google Scholar 

  29. Vandenbrink JP, Hammonds RE, Hilten RN et al (2013) Tissue specific analysis of bioconversion traits in the bioenergy grass Sorghum bicolor. Ind Crops Prod 50:118–130. doi:10.1016/j.indcrop.2013.06.039

    CAS  Article  Google Scholar 

  30. Rohowsky B, Häßler T, Gladis A et al (2013) Feasibility of simultaneous saccharification and juice co-fermentation on hydrothermal pretreated sweet sorghum bagasse for ethanol production. Appl Energy 102:211–219. doi:10.1016/j.apenergy.2012.03.039

    CAS  Article  Google Scholar 

  31. Sipos B, Réczey J, Somorai Z et al (2009) Sweet sorghum as feedstock for ethanol production: enzymatic hydrolysis of steam-pretreated bagasse. Appl Biochem Biotechnol 153:151–162. doi:10.1007/s12010-008-8423-9

    CAS  PubMed  Article  Google Scholar 

  32. Wu L, Arakane M, Ike M et al (2011) Low temperature alkali pretreatment for improving enzymatic digestibility of sweet sorghum bagasse for ethanol production. Bioresour Technol 102:4793–4799. doi:10.1016/j.biortech.2011.01.023

    CAS  PubMed  Article  Google Scholar 

  33. Molaverdi M, Karimi K, Khanahmadi M, Goshadrou A (2013) Enhanced sweet sorghum stalk to ethanol by fungus Mucor indicus using solid state fermentation followed by simultaneous saccharification and fermentation. Ind Crops Prod 49:580–585. doi:10.1016/j.indcrop.2013.06.024

    CAS  Article  Google Scholar 

  34. Sun S-L, Wen J-L, Ma M-G et al (2013) Revealing the structural inhomogeneity of lignins from sweet sorghum stem by successive alkali extractions. J Agric Food Chem 61:4226–4235. doi:10.1021/jf400824p

    CAS  PubMed  Article  Google Scholar 

  35. Wang W, Zhuang X, Yuan Z et al (2012) High consistency enzymatic saccharification of sweet sorghum bagasse pretreated with liquid hot water. Bioresour Technol 108:252–257. doi:10.1016/j.biortech.2011.12.092

    CAS  PubMed  Article  Google Scholar 

  36. Yu Q, Zhuang X, Wang Q et al (2012) Hydrolysis of sweet sorghum bagasse and eucalyptus wood chips with liquid hot water. Bioresour Technol 116:220–225. doi:10.1016/j.biortech.2012.04.031

    CAS  PubMed  Article  Google Scholar 

  37. Choudhary R, Umagiliyage AL, Liang Y et al (2012) Microwave pretreatment for enzymatic saccharification of sweet sorghum bagasse. Biomass Bioenergy 39:218–226. doi:10.1016/j.biombioe.2012.01.006

    CAS  Article  Google Scholar 

  38. Wu L, Gau M, Takai T et al (2013) Sorghum as whole-crop feedstock for integrated production of fermentable sugars. Ind Crops Prod 49:645–647. doi:10.1016/j.indcrop.2013.06.020

    CAS  Article  Google Scholar 

  39. Stefaniak TR, Dahlberg JA, Bean BW et al (2012) Variation in biomass composition components among forage, biomass, sorghum-sudangrass, and sweet sorghum types. Crop Sci 52:1949. doi:10.2135/cropsci2011.10.0534

    Article  Google Scholar 

  40. Li B-Z, Balan V, Yuan Y-J, Dale BE (2010) Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment. Bioresour Technol 101:1285–1292. doi:10.1016/j.biortech.2009.09.044

    CAS  PubMed  Article  Google Scholar 

  41. Kim M, Han K-J, Jeong Y, Day DF (2012) Utilization of whole sweet sorghum containing juice, leaves, and bagasse for bio-ethanol production. Food Sci Biotechnol 21:1075–1080. doi:10.1007/s10068-012-0139-5

    CAS  Article  Google Scholar 

  42. Dogaris I, Gkounta O, Mamma D, Kekos D (2012) Bioconversion of dilute-acid pretreated sorghum bagasse to ethanol by Neurospora crassa. Appl Microbiol Biotechnol 95:541–550. doi:10.1007/s00253-012-4113-1

    CAS  PubMed  Article  Google Scholar 

  43. Chen C, Boldor D, Aita G, Walker M (2012) Ethanol production from sorghum by a microwave-assisted dilute ammonia pretreatment. Bioresour Technol 110:190–197. doi:10.1016/j.biortech.2012.01.021

    CAS  PubMed  Article  Google Scholar 

  44. Xu F, Theerarattananoon K, Wu X et al (2011) Process optimization for ethanol production from photoperiod-sensitive sorghum: focus on cellulose conversion. Ind Crops Prod 34:1212–1218

    CAS  Article  Google Scholar 

  45. Hames BR, Ruiz RO, Scarlata CJ et al (2008) Preparation of samples for compositional analysis. National Renewable Energy Laboratory, Golden, Colorado NREL/TP-510-42620

  46. ASTM Standard E1757-01 (2007) Practice for preparation of biomass for compositional analysis. ASTM International, West Conshohocken, Pennsylvania

  47. Sluiter A, Ruiz RO, Scarlata CJ et al (2005) Determination of extractives in biomass. National Renewable Energy Laboratory, Golden,  Colorado NREL/TP-510-42619

  48. ASTM Standard E1690 (2008) Test method for determination of ethanol extractives in biomass. ASTM International, West Conshohocken, Pennsylvania

  49. Sluiter A, Hames BR, Ruiz RO et al (2010) Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory, Golden, Colorado NREL/TP-510-42618

  50. ASTM Standard E1721-01 (2009) Test method for determination of acid-insoluble residue in biomass. ASTM International, West Conshohocken, Pennsylvania

  51. ASTM Standard E1821-08 (2008) Test method for determination of carbohydrates in biomass by gas chromatography. ASTM International, West Conshohocken, Pennsylvania

  52. Haahr M (2013) True random number service. http://www.random.org/. Accessed 29 May 2013

  53. Li Z, Zhai H, Zhang Y, Yu L (2012) Cell morphology and chemical characteristics of corn stover fractions. Ind Crops Prod 37:130–136. doi:10.1016/j.indcrop.2011.11.025

    Article  Google Scholar 

  54. Zeng M, Ximenes E, Ladisch MR et al (2012) Tissue-specific biomass recalcitrance in corn stover pretreated with liquid hot-water: enzymatic hydrolysis (part 1). Biotechnol Bioeng 109:390–397. doi:10.1002/bit.23337

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Brantly Braswell, Kevin Caffrey, Ed Godfrey, Chuck Mooney, and the North Carolina State University Analytical Instrumentation Facility for their assistance with material collection and analysis. We would also like to extend our appreciation to Dr. David Danehower for providing equipment and resources key to our methodology. This work was supported in part by a grant from the Biofuels Center of North Carolina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mari S. Chinn.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Online Resource 1

(DOCX 39 kb)

Online Resource 2

(DOCX 86 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Whitfield, M.B., Chinn, M.S. & Veal, M.W. Recommendations to Mitigate Potential Sources of Error in Preparation of Biomass Sorghum Samples for Compositional Analyses Used in Industrial and Forage Applications. Bioenerg. Res. 7, 1561–1570 (2014). https://doi.org/10.1007/s12155-014-9476-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9476-y

Keywords

  • Sweet sorghum
  • Forage sorghum
  • Physical properties
  • Fermentable sugars
  • Biofuel
  • Lignocellulose